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Abstract—In this paper, we propose and evaluate the applica-
tion of unsupervised machine learning to anomaly detection for
a Cyber-Physical System (CPS). We compare two methods: Deep
Neural Networks (DNN) adapted to time series data generated
by a CPS, and one-class Support Vector Machines (SVM). These
methods are evaluated against data from the Secure Water
Treatment (SWaT) testbed, a scaled-down but fully operational
raw water purification plant. For both methods, we first train
detectors using a log generated by SWaT operating under normal
conditions. Then, we evaluate the performance of both methods
using a log generated by SWaT operating under 36 different
attack scenarios. We find that our DNN generates fewer false
positives than our one-class SVM while our SVM detects slightly
more anomalies. Overall, our DNN has a slightly better F measure
than our SVM. We discuss the characteristics of the DNN
and one-class SVM used in this experiment, and compare the
advantages and disadvantages of the two methods.

I. INTRODUCTION

A Cyber-Physical System (CPS) is a complex system con-
sisting of distributed computing elements that interact with
physical processes. CPSs have become ubiquitous in modern
life, with software now controlling cars, airplanes, and even
critical public infrastructure such as water treatment plants,
smart grids, and railways.

Anomaly detection for CPSs concerns the identification of
unusual behaviors (anomalies), i.e. behaviors that are not
exhibited under normal operation. These anomalies may result
from attacks on the control elements, network, or physical
environment, but they may also result from faults, operator
errors, or even just standard bugs or misconfigurations in
the software. The ability to detect anomalies thus serves as
a defensive mechanism, while also facilitating development,
maintenance, and repairs of CPSs.

Anomaly detection techniques can be rule-based or model-
based. In the former, rules are supplied that capture patterns in
the data, and detection involves testing for their violation. In
the latter, a mathematical model characterizing the system is
supplied, and detection involves querying new data against that
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model (e.g. [1], [2], [3], [4], [5], [6], [7]). Unfortunately, con-
structing models of CPSs that are accurate enough in practice
is a notoriously difficult task, arising from the tight integration
of algorithmic control and complex physical processes.

In this paper, we investigate the application of unsupervised
machine learning to building models of CPSs for anomaly
detection. The advantage of unsupervised machine learning is
that it does not require any understanding of the complexities
of the target CPS; instead, it builds models solely from data
logs that are ordinarily available from historians. This research
direction is seeing increasing interest (e.g. [8], [9]), but much
remains to be understood about how to apply it effectively in
practice.

We apply and compare two unsupervised methods: first, a
Deep Neural Network (DNN) consisting of a layer of Long
Short-Term Memory (LSTM) architecture followed by feed-
forward layers of multiple inputs and outputs; second, a one-
class Support Vector Machine (SVM) [10], which is widely
used for anomaly detection.

We evaluate these methods using logs from Secure Water
Treatment (SWaT), a testbed built at the Singapore University
of Technology and Design for cyber-security research [11].
SWaT is a scaled-down but fully operational water treatment
plant, capable of producing five gallons of drinking water per
minute. For learning our models, we make use of a real log
generated by SWaT over seven days of continuous operation,
and to evaluate them, we use another four days of logged
data during which the system was subjected to 36 different
network attack scenarios [12]. We compare how many faults
(i.e. anomalies) the two methods can find.

According to Aggarwal [13], there are two approaches
for finding outliers (i.e. anomalies) in time series data. The
first approach is to find outlier instants in the time series,
typically based on the deviation from predicted values at
each time instant. Many models for predicting values are
proposed, such as auto-regressive models and hidden variable-
based models. However, these methods assume linearity of
the system. SWaT is a hybrid system integrating non-linear
dynamical systems with digital control logic, hence these
methods are unsuitable for our task. We choose DNNs as a
prediction model because DNNs can learn non-linear relations



without any prior knowledge of the system. Using an LSTM
architecture, we can capture the dynamic nature of SWaT.

The second approach is to find unusual shapes in the time
series. We use one-class SVMs for this purpose. Clustering-
based methods would be difficult to use because of the high
dimensionality of the data stream: the SWaT testbed contains
25 sensors and 26 actuators.

We find that the DNN performs slightly better than the one-
class SVM: the precision of the DNN is higher, while recall
is slightly better with the SVM. This difference is largely
accounted for by the tendency of one-class SVM to report
abrupt changes in sensor values as anomalies, even when they
are normal, thus causing it to report more false positives. Our
DNN and SVM usually detect anomalies when a sensor reports
a constant anomalous value. However, both methods have
difficulties in detecting a gradual anomalous change of sensor
values or anomalous actuator movements. Our DNN also has
difficulties in detecting out of bound values. In general, SVM
is more sensitive to anomalies—but not always.

This paper is organized as follows. Section II summarizes
related work and clarifies our contributions. Section III in-
troduces the SWaT testbed. Section IV introduces our DNN-
and SVM-based detection methods. Section V describes how
our methods are implemented and our experimental setup. We
also discuss the computation costs of both methods. Section VI
describes how we tune the hyper-parameters of the methods.
Section VII describes our findings based on our evaluation
using a SWaT attack log. Section VIII presents conclusions
and future work. In particular, we discuss the advantages and
disadvantages of the two methods.

II. RELATED WORK

There is a large body of work on simulation and model-
based anomaly detection for CPSs, e.g. [1], [2], [3], [4], [5],
[6], [7]. However, these approaches require prior knowledge
of the system’s configuration, in addition to operation logs.

There is a proposal to use supervised machine learning [14]
to obtain a model for anomaly detection, which requires access
to the source code of the control elements. In this approach,
the detector is trained on correct and incorrect behaviors, the
latter of which are generated by randomly injecting faults into
the control code. Currently, only a preliminary investigation
of the approach has been performed.

Jones et al. [8] propose an SVM-like algorithm which finds
a description in a Signal Temporal Logic (STL) formula of the
known region of behaviors. An advantage of this approach
is that it often creates a readable description of the known
behaviors. However, if the system behavior does not allow
for a short description in STL, this method will not work.
Because SWaT is dynamic, non-linear, stochastic, and has
high dimensionality, a short description is unlikely. Moreover,
in their method, the tightness function is heuristic and no
justification is given.

Anomaly detection, beyond the specific application to CPSs,
is a well-studied area of research (see e.g. the survey [15]
and textbook [13]). Harada et al. [9] applies one of the most

widely-used anomaly detection methods, Local Outlier Factor
(LOF) [16], to an automated aquarium management system
and detects the failure of mutual exclusion. However, LOF
is a method to find outliers without prior knowledge of the
normal behaviors. Because the normal behaviors are known
in our case, LOF is not suitable for our task.

There is some work applying DNNs for anomaly detection.
Malhotra et al. [17] use stacked LSTMs and prediction errors
for detecting anomalies. However, prediction errors for data
that represents normal situations can fluctuate depending on
the system state, hence using a uniform threshold to detect
anomalies may not produce the best performance. In fact,
recall for their method is in the order of 10%. In contrast,
our DNNs directly compute the probability distribution of the
next status for every time step, thus avoiding this difficulty. In
addition, our method can simultaneously handle a mixture of
discrete valued data and real-number valued data, for which
the prediction error is difficult to define. Zhai et al. [18]
propose the use of energy-based models and energy functions
for detecting anomalies. However, their work assumes that
the data is real-number valued, and it is not clear whether
their method can be extended to data which is a mixture of
discrete and real. Furthermore, their energy function seems to
compute energy for the entire time series, and it is also not
clear how their method can be used to detect the time instants
of anomalies.

The SWaT testbed and its dataset [12] have been used
to evaluate a number of other approaches for cyber-attack
prevention, including learning classifiers from data [14], [19],
monitoring network traffic [20], or monitoring process invari-
ants [21], [22]. These process invariants are derived from
the physical laws concerning different aspects of the SWaT
system, and thus in our terminology can be considered in the
category of rule-based anomaly detection methods.

Goh et al. [19] propose a similar unsupervised machine
learning approach to learn a model of SWaT. They use stacked
LSTMs to detect anomalies, and the same SWaT dataset in
their evaluation [12]. However, they only apply their approach
to the first SWaT subsystem (of six), and consider only ten
attacks in their evaluation (i.e. the attacks targeted to that
subsystem). Their anomaly detection is based on cumulative
sums of prediction error for each sensor, with the evaluation
based upon the number of attacks detected. Nine of the ten
attacks are detected, with four false positives reported. In
contrast, we apply our method to the SWaT testbed in its
entirety (i.e. all six subsystems) and evaluate against the
full attack log, spanning 36 attacks. We achieve very high
precision, i.e. very few false positives while a moderate recall
rate. Precision and recall are calculated based on the number
of detected log entries instead of number of attacks, which
should lead to smaller recall rates. Our methods are based on
probabilistic density estimation, rather than prediction error.

III. SECURE WATER TREATMENT (SWAT) TESTBED

The CPS we evaluate our learning architecture on is Secure
Water Treatment (SWaT) [11], a testbed at the Singapore



Fig. 1. The Secure Water Treatment (SWaT) testbed

University of Technology and Design that was built to fa-
cilitate cyber-security research (Fig. 1). SWaT is a scaled-
down but otherwise fully operational raw water purification
plant, capable of producing five gallons of safe drinking water
per minute. It is representative of CPSs typically used in
public infrastructure, and is highly dynamic, with the flow
of water and chemicals between tanks an intrinsic part of its
operation and behavior. Raw water is treated in a modern six-
stage architecture, consisting of physical processes such as
ultrafiltration, de-chlorination, and reverse osmosis. The cyber
part of SWaT consists of Programmable Logic Controllers
(PLCs), a layered communications network, Human-Machine
Interfaces (HMIs), a Supervisory Control and Data Acquisition
(SCADA) workstation, and a historian.

Each stage of SWaT is controlled by a dedicated PLC,
which interacts with the physical environment via sensors and
actuators connected over a ring network. While varying from
stage-to-stage, a typical sensor in SWaT might read the level
of a water tank or the rate of water flow in a pipe, and a
typical actuator might operate a motorized valve for opening
or closing an inflow pipe. Each PLC repeatedly cycles through
a ladder logic program, reading the latest data from the sensors
and computing the appropriate signals to send to the actuators.
This data is also made available to the SCADA system and is
recorded by the historian, allowing for offline analyses [12].

Many of the security concerns associated with the au-
tomation of public infrastructure are exemplified by SWaT.
If an attacker is able to compromise its network or PLC
programs, they may be able to drive the system into states
that cause physical damage, e.g. overflowing a tank, pumping
an empty one, or mixing chemicals unsafely. SWaT has
thus been used by researchers as a testbed for developing
different attack prevention measures for water treatment plants,
e.g. by monitoring process invariants [21], [22], monitoring
network traffic [20], or learning and monitoring log-based
classifiers [14], [19].

For evaluating our learning architecture, we make use of a
large dataset that was obtained from the SWaT historian [12].
The dataset (available online [23]) consists of all network
traffic, sensor data, and actuator data that was systematically
collected over 11 days of continuous operation. For seven
of the days, SWaT was operated under normal conditions,
while on the other four days, it was subjected to 36 attack
scenarios [12] representative of typical network-based attacks
on CPSs. These attacks were implemented through the data
communications link of the SWaT network: data packets
were hijacked, allowing for sensor data and actuator signals
to be manipulated before reaching the PLCs, pumps, and
valves (e.g. preventing a valve from opening, or reporting
a water tank level as lower than it actually is). The attacks
were systematically generated with respect to the sensors and
components. Of the 36 attacks, 26 are single-state single-point
attacks, with the remaining ones more complex: 4 are single-
stage multi-point; 2 are multi-stage single-point; and 4 are
multi-stage multi-point. A full description of the attacks is
provided with the dataset [23].

IV. ANOMALY DETECTION METHODS

We present our two anomaly detection methods, based
respectively on a DNN and one-class SVM.

A. Deep Neural Network

The first of our two anomaly detection methods uses a DNN
to implement probabilistic outlier detection. Such a detection
method requires a probability distribution for data, in which
data points assigned a low probability are judged as outliers
(e.g. data points generated by a different mechanism from
normal data points).

In our method, this probability distribution is represented
by a DNN that was trained on normal data from the
CPS log. Assume we have n actuators and m sensors.
The log under consideration is a sequence of log entries
〈a1, . . . , an, s1, . . . , sm〉. We abbreviate a1, . . . , an to a and
s1, . . . , sm to s. Further, the i-th log entry is denoted by
li ≡ 〈a(i), s(i)〉 and the log entries up to i are denoted by li.
Our DNN computes an outlier factor, − log q(li | li−1), where
q is a probability distribution. However, it cannot be computed
directly in this form because there are several combinations of
actuator positions, and infinitely many sensor values. Instead,
we decompose the outlier factor into:

−
n∑

j=1

log qj(aj(i) | li−1, a1(i), . . . , aj−1(i))

−
m∑

k=1

log rk(sk(i) | li−1, a(i), s1(i), . . . , sk−1(i)) (1)

Here, qj is a discrete distribution, whereas rk is approximated
by a Gaussian distribution. We represent qj and rk using a
single neural network with multiple inputs and outputs.

Ultimately, we obtain an architecture similar to the illus-
tration in Fig. 2. The figure assumes that we have only one
actuator (with three positions) and five sensors. To compute
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Fig. 2. DNN architecture

the i-th outlier factor, our DNN takes log entries up to the
i− 1-th position into an LSTM. The output of the LSTM
is first used for predicting the probability of each actuator
position using the soft-max function. The output layer then
takes the true actuator position in the i-th log entry and mixes
it with the value of the hidden layer using a bilinear function.
The output of the bilinear function is then fully connected to
the next hidden layer and output. The outputs are the predicted
mean and variance of the first sensor value. Furthermore, the
output layer takes the true first sensor value in the i-th log
entry, and repeats the process above. Finally, we sum up all
the log probabilities of the actuator positions and sensor values
to obtain the outlier factor.

To train the neural network, we must define a cost function
that calculates the cost (error) of the predicted probability
distributions in comparison to the observed log entries. We
use the cross entropy of the real probability distributions p and
the predicted probability distributions q of the log entries. The
cross entropy C(p, q) between p and q is defined as follows:

C(p, q) =

∫
−p(z) log q(z)dµ (2)

where z is a data point and µ is an appropriate measure over
the data points. However, we do not know the true distribution,
p; instead, we approximate it by Dirac’s delta function, δ(z−
x), where x is an observation. Therefore, we minimize:

C(p, q) = − log q(x) (3)

=
N∑

i=1

− log q(li | li−1) (4)

This is the sum of all the outlier factors. Thus, we use the
sum of all the outlier factors in the training data as the cost
function.

Once we have trained a DNN, we can compute outlier
factors as stated above. To determine outliers, however, we
need to have a threshold for outlier factors. This is difficult to
do theoretically, so we need to use experiments.

B. One-Class SVM

Our experiments compare our DNN-based method with a
straightforward application of the widely used one-class SVM
algorithm [10]. To learn a non-linear classification boundary,
we use the Radial Basis Function (RBF) kernel.

Because the log sequence is a time series, we employ
the sliding window method [24] to convert the data into
individual feature vectors. If li denotes the i-th log entry
and w is a prescribed window size, then a tuple of the form
Wi ≡ 〈li, li+1, . . . , li+w−1〉 is called a window, and the one-
class SVM classifies each window as normal or abnormal. A
fixed-size window is slid across the entire log, so that from a
log with k entries, k−w+1 windows W1,W2, . . . ,Wk−w+1

are extracted and classified.
In the training phase, we simply extract all windows from

the training data and feed them to the training algorithm of
one-class SVM. In the testing phase, we use test data that
has a normal/abnormal label for every log entry. We extract
windows as we did for training data, and a label is derived for
each window from the log entries they contain as follows: a
window Wi is labeled abnormal if at least one of the log entries
li, li+1, . . . , li+w−1 is labeled abnormal; otherwise it is labeled
normal. Each window is fed to the trained classifier, which
outputs a normal/abnormal verdict; this verdict is compared
to the label of the window for evaluation.

Essentially, we evaluate the classifier by its ability to pick
up anomalies occurring in a window regardless of the location.
In graphical presentations of experimental results, we align the
verdict of one-class SVM with the beginning of the window
that it is associated to. Thus, technically, the first occurrence
of the truly anomalous log entry may be off by up to w − 1
entries in the graphs. In this sense, the resolution of SVM’s
verdicts degrades as the window size is increased. In the cases
we have tried, however, the resolution is too fine to affect our
conclusions.

We normalize data based on means and variances of each
(training / testing) dataset. A preliminary logarithmic grid
search found that the specific method of normalization has
a large effect on the performance of SVM. If we normalize
our testing data using the mean and variance of training data,
F measures are around 20-30%, while if we normalize testing
data using their own mean and variance, F measures can reach
almost 80%. This may suggest that for SVM, changes relative
to long-term trends are more important than absolute values
of sensor data. Therefore, in this paper, we normalize the
training and testing datasets for SVM by their own means
and variances. On the other hand, we find that DNN performs
better when testing data is normalized using the mean and
variance of the training data, and hence normalize it that way.



V. IMPLEMENTATION AND EXPERIMENTAL SETUP

Our DNNs are implemented using the Chainer deep learning
framework [25]. Our SVM is implemented using the scikit-
learn machine learning library [26], which uses libsvm [27]
as a backend.

To train a DNN with 100 dimensions of hidden layers, we
use a machine equipped with an i7 6700 quad core, DDR4 64
GB RAM, and a NVIDIA GTX 1080 8 GB GPU. For DNNs
with more than 200 dimensions of hidden layers, we use GPU
cluster machines equipped with 10 cores of Intel Xeon E5-
2630Lv4, 256GB RAM and 8 NVIDIA Tesla P100s. Training
takes about two weeks for the DNN with 100 dimensions of
hidden layers with 58 training epochs. Evaluation of the DNNs
is performed on cluster machines equipped with 10 cores of
Intel Xeon E5-2630Lv4 and 256GB RAM without using a
GPU. Evaluation takes about 8 hours for the DNN with 100
dimensions of hidden layers.

One-class SVM was trained and tested on a Mac Pro
equipped with a 3GHz, 8-core Intel Xeon E5 and 64GB of
DDR3 RAM and the aforementioned cluster machines without
GPUs. The running time varied widely by parameters: training
took between 11 seconds and 26 hours depending on the
parameter settings, while evaluation took up to 7 hours. The
best-performing parameter combination took 30 minutes to
train and 10 minutes to evaluate.

VI. HYPER-PARAMETER TUNING

Both methods require some tuning of their hyper-
parameters, i.e. parameters whose values are set before learn-
ing. We explain in the following how we performed this.

A. Deep Neural Network

Our DNN has many parameters, but we tune only the
dimensions of intermediate layers (purple in the Fig. 2) and
the threshold value of the outlier factor. We split the normal
log into ten chunks. Training uses batch learning with a
batch size of ten; 100 steps of log entries are learnt at once,
and back propagation is unchained after every 100 steps
of log entries. The activation function used is the sigmoid
function. We remark that Rectified Linear Unit (ReLU) was
also tried, but training error quickly becomes NaN. We also
tried the architecture in which intermediate layers between
output layers and the bilinear functions in the top layers are
removed, but we found that the training error does not stabilize
with respect to the training epochs.

Fig. 3 shows the training error along with the number of
training epochs. We experimented on DNNs with 100–500
dimensions of intermediate layers. The training error steadily
decreases as the number of training epochs is increased,
regardless of the dimension of the intermediate layers.

Fig. 4 shows the F measure of trained DNNs of each epoch.
Some data points are missing because we could not evaluate
all neural models due to limits in our computation budget. The
F measure depends on a threshold value: we maximize the F
measure by using a different threshold value for each epoch
and DNN. Interestingly, there is no trend with respect to the
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number of training epochs. The first epoch already achieves
almost the best F measure, and 10–30 epochs show the worst
performance; the Area Under Curve (AUC) has also a similar
tendency. Based on these results, we choose a DNN with 100
dimensions of intermediate layers, which is trained with 58
epochs (the maximal in our experiment) for the evaluation.

By using a sufficient amount of held-out data, we can
tune the hyper-parameters without using data that contains
anomalies (possibly leading to test and thus generalization
errors). This is desirable, because for most realistic situations,
we do not have data with real anomalies, and simulated
anomalies may not represent real anomalies. However, in this
experiment, we do not use held-out data to test the accuracy
of trained DNNs, because we deem that we do not have
enough data. We use the last day of the normal log as held-
out data and test the models. This method suggests early
stopping of training: around 13 epochs. After 13 epochs, the
test error steadily increases. However, the model obtained
with 13 epochs of training underperforms with a wide margin
against better trained models when evaluated with attack data.



TABLE I
F MEASURES FROM LOGARITHMIC GRID SEARCH ON ν , AND γ

w = 2

γ \ ν 10−4 10−3 10−2 10−1 0.5
10−4 0.02973 0.08248 0.12590 0.47346 0.31791
10−3 0.13399 0.13924 0.77782 0.59440 0.32857
10−2 0.69236 0.68711 0.63592 0.49769 0.29959
10−1 0.22105 0.22103 0.22149 0.21845 0.21471
1.0 0.21409 0.21409 0.21409 0.21409 0.21409

w = 4

γ \ ν 10−4 10−3 10−2 10−1 0.5
10−4 0.05237 0.08461 0.12688 0.50846 0.32168
10−3 0.79140 0.79506 0.79127 0.58968 0.32617
10−2 0.53330 0.53048 0.49043 0.37822 0.26742
10−1 0.21452 0.21452 0.21451 0.21435 0.21433
1.0 0.21433 0.21433 0.21433 0.21433 0.21433

TABLE II
COMPARISON OF DNN AND ONE-CLASS SVM

Method Precision Recall F measure

DNN 0.98295 0.67847 0.80281
One Class SVM 0.92500 0.69901 0.79628

B. One-Class SVM

One-class SVM has three parameters: w, ν and γ. As before,
w is the size of the sliding window; ν is a weight in the
range (0..1] that controls the trade-off between mis-classifying
normal data as abnormal and the vector-norm of the learned
weights (i.e. model simplicity); and γ is a coefficient of the
kernel. By default, scikit-learn chooses ν = 0.5 and γ = 1/n,
where n is the number of dimensions in one feature vector
(i.e. one window). In our setup, n = 52w.

To explore the effects of these parameters at different
scales, we first varied the parameters logarithmically (Table I),
training and testing one-class SVM with all combinations
of w = 2, 4, ν ∈ {10−4, 10−3, 10−2, 10−1, 0.5}, and γ ∈
{10−4, 10−3, 10−2, 10−1, 1}. We varied w through a small
range because it directly affects the dimensionality of feature
vectors, and high-dimensional feature vectors are known to
tend to throw off SVM. The ranges of ν and γ both contain
values in the same ballpark as the defaults in scikit-learn, but
as we will now see, those values are suboptimal.

The grid search suggests that the best performing instance
exists around w = 4, γ = ν = 10−3. We further explore
the optimal parameter using random parameter search [28].
We fix w = 4 and generate γ and ν randomly using the
exponential distribution scaled by 10−3. We test 4204 random
instances generated by this method, and improve the F measure
to 0.79628. Analyses in the following section refer to this best-
performing instance: w = 4, γ = 0.0008181483058667633,
ν = 0.004584962079820046.

VII. EVALUATION

Table II presents a comparison of our DNN and one-class
SVM on the SWaT attack log, with respect to precision, recall,

Fig. 5. Outlier factor and SVM verdicts

and F measure of anomalies. The hyper-parameters were tuned
as described in Section VI. DNN has better precision while
SVM has slightly better recall; overall DNN has a slightly
better F measure.

It should be noted that false positive and true positive rates,
which underlie these statistics, are counted over log entries for
DNN whereas they are counted over windows for SVM. Thus,
a direct comparison of the numbers in Table II should only be
made with this in mind. A more in-depth comparison follows,
which does confirm the impression given by the table: namely,
that both detectors are able to catch anomalies at comparable
rates, but SVM is more prone to false alarms.

Fig. 5 depicts how the outlier factor (blue line), SVM
verdicts (gold bar indicating an anomaly verdict), and ground
truth (pink background indicating an attack) change during
the entire attack dataset, spanning from Dec 29. 2015 to Jan
2. 2016. We can observe that a large outlier factor corresponds
to anomalies, while some anomalies do not cause an increase
of outlier factor. SVM emits false alarms intermittently. Note
that at this level of magnification, regions of SVM false alarms
appear more densely marked than they actually are. Overall,
SVM emits false alarms on about 0.8% of non-attack windows.

Fig. 6 shows some false positives reported by our SVM.
As discussed above, our SVM tends to report false positives
intermittently. The figure suggests that abrupt changes of some
sensor values may be the cause. This is natural because our
SVM only uses the values in the moving window, hence longer
term trends are not counted at all.

Next, we investigate the effectiveness of the methods at
detecting individual attacks. Table III shows the recall rates of
both methods for each attack. The attack IDs and descriptions
correspond to those provided in the dataset documentation [23]
(note the omission of attacks #5, #9, #12, #15, #18, which
have no effect on the physical state, and thus no effect on the
attack log). According to this table, if an attack changes sensor
values to constant anomalous values, our DNN usually detects
it. On the other hand, our DNN misses the attacks which cause
anomalous actuator movements or gradual changes of sensor



Fig. 6. SVM false positives (Dec 29. 2015)

values. The behavior of SVM is harder to characterize. SVM
seems more effective at detecting out of range values as in #7
and #32, but not always, as in #31 and #33. As shown by #10
and #39, SVM sometimes has difficulty in detecting anomalies
which are detected by DNN with high precision.

Finally, we remark on two threats to the validity of our
evaluation:

1) Our experiment is limited to the SWaT testbed.
2) Our experiment is based on deliberately injected anoma-

lies, not anomalies in real life.
Because of (1), it could be possible that our results do not
generalize to other CPSs. Because of (2), it could be possible
that our results do not apply to anomalies from real attacks.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the application of unsuper-
vised machine learning to anomaly detection for CPSs. In
particular, we proposed a DNN (adapted to time series data)
that implemented a probabilistic outlier detector, and com-
pared its performance against a one-class SVM. We assessed
the two methods in the context of the SWaT testbed [11],
a scaled-down but fully operational raw water purification
plant. In particular, we trained on an extensive dataset covering
seven days of continuous normal operation, and evaluated the
methods using a dataset from four days of attacks [19], [23].

We made our comparison based on the precision and recall
of detected anomalies in this attack log, finding that the DNN
performs slightly better in terms of F measure, with the DNN
having better precision and SVM having slightly better recall.
We also found that SVM tended to report false positives
intermittently, possibly due to using only the values in a fixed
sliding window. We found that the computation cost for our
DNN was much higher: training the DNN took about two
weeks, while the best performing SVM needed only about 30
minutes. The running times for performing anomaly detection
on the four days of attack data is also longer for DNN, taking
8 hours for DNN and only about 10 minutes for SVM. Both
methods share some limitations: they both have difficulties in

detecting gradual changes of sensor values. Both methods also
have difficulties in detecting anomalous actuator behavior—
overcoming this may require taking into account the logic of
the controllers. We plan to tackle these limitations in future
work by improving the neural architecture as well as by feature
engineering.

The results of our study face two principal threats to validity.
First, we only experimented with a single dataset generated by
the SWaT system, meaning that our results may not generalize
to other CPSs. Second, our dataset only contains anomalies
arising from deliberately injected attacks; other anomalies may
have different characteristics.

Our study can be extended in several directions. First, we
need to improve the performance of our methods further.
In particular, encoding long-term data trends in the feature
vectors would improve the performance of both methods, and
to be practical, a higher recall rate is necessary. In addition,
we plan to make our detector capable of computing outlier
factors for individual sensors and actuators, to infer which
sensors or actuators are causing anomalies. Next, we plan to
test our methods more rigorously using the SWaT simulator.
This software faithfully simulates the cyber part of the SWaT
testbed, and provides some approximate models for its simpler
physical processes (e.g. water flow). Using the simulator,
we could perform some additional experiments that would
otherwise have some safety consequences, e.g. injecting faulty
control software. Third, we plan to extend our comparisons
to other methods beyond DNN and SVM. In particular, we
plan to compare additional neural-based methods [17], [18],
and other machine learning and statistical methods. It would
also be interesting to compare specification mining techniques
developed in the software engineering field, such as that of
Jones et al. [8]. Finally, we are actively looking for other real-
world CPS datasets on which to evaluate our methods.
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