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Abstract. We present a new approach for verifying programs written
in GP (for Graph Programs), an experimental programming language
for performing computations on graphs at a high level of abstraction.
Taking a labelled graph as input, a graph program nondeterministically
applies to it a number of graph transformation rules, directed by simple
control constructs such as sequential composition and as-long-as-possible
iteration. We adapt classical Hoare logic to the domain of graphs, and
describe a system of sound proof rules for showing the partial correctness
of graph programs.

1 Introduction

Rule-based graph transformation (or graph rewriting) has been studied since
the 1970s, motivated by its many applications to programming and specifica-
tion, and the natural visualisation that graphs and graph transformation rules
give to dynamic systems (see the recent monograph [4]). Recently, graph-based
programming languages have seen increased interest as a way of controlling the
application of rules to graphs, in order to solve graph problems in practice. For
example, in implementing a graph algorithm, a graph program might direct the
application of rules to a graph such that they compute its transitive closure. In a
setting where a graph represents a system state, graph programs might represent
the system’s operational behaviour.

Often, it is desirable to be able to prove that a graph program is correct ac-
cording to some specification. Suppose that a graph program computes a colour-
ing of a graph, encoding the colours in the labels of nodes. Can we prove that
the graph program will always produce properly coloured graphs? Suppose that
we model the states of an access control system with graphs, and describe the
operation of logging out a user by a graph program. Can we prove that certain
safety properties are conformed to by the design of the operation?

Up until now, research has tended to focus on proving the correctness of
graph grammars, and sets of graph transformation rules applied arbitrarily to
graphs (see, for example, [19,2,11,3,6]). A first step towards verifying graph pro-
grams was taken by Habel, Pennemann, and Rensink [7], who adopted Dijkstra’s
weakest preconditions approach for so-called high-level programs, which provide
control constructs such as sequential composition and as-long-as-possible itera-
tion over sets of conditional graph transformation rules. However, to the best
of our knowledge, the challenge of verifying programs written in implemented



graph transformation languages — such as PROGRES [20], AGG [21], Fujaba
[13] and GrGen [5] — has yet to be addressed.

In this paper, we present an approach for verifying programs in the graph
programming language GP (for Graph Programs) [16,12], a nondeterministic
and computationally complete language for solving problems in the domain of
graphs, and for which a prototype implementation exists. Rather than adopt-
ing a weakest precondition approach, we follow Hoare’s seminal paper [10] and
devise a calculus of proof rules which are directed by the syntax of GP’s con-
trol constructs. Similar to classical Hoare logic, our calculus aims to facilitate
human-guided verification and the compositional construction of proofs.

We intend in this paper to give the reader an informal understanding of our
approach, favouring intuition and examples over the full technical details. These
however can be found in [18] (a preprint of which is available from the authors’
websites).

The organisation of this paper is as follows. Section 2 provides a brief intro-
duction to GP, and explores its features through an example program. Section
3 introduces E-conditions, a graph specification formalism we use in the asser-
tions of our Hoare triples. Section 4 presents the axiom schemata and inference
rules of our partial correctness proof system, and demonstrates their use in an
example proof of a simple graph program. Finally, in Section 5, we conclude.

2 Graph Programs

Graph programs are constructed from two components. First, a set of conditional
rule schemata; intuitively, these are graph transformation rules with variables
and expressions allowed as labels. Second, a sequence of commands controlling
the application of the conditional rule schemata to a provided input graph. We
review conditional rule schemata and programs in turn, and discuss an example
program. Technical details and further examples can be found in [16,17].

2.1 Conditional Rule Schemata

Conditional rule schemata are the “building blocks” of graph programs, each
one describing a single-step transformation of a graph. Rule schemata comprise
two graphs: a left graph which describes a part to be matched, and a right graph
which describes what the match should be replaced with. The labels of their
graphs contain expressions whose variables are instantiated in the graph match-
ing process to integers or strings. The possible instantiations of these variables
can be restricted by a rule schema condition, a simple predicate demanding
particular relationships between variables, or the non-existence of edges. The
expressions in labels are evaluated to integers or strings after the variables have
been instantiated. Rule schemata are entirely syntactic constructs, representing
possibly infinite sets of graph transformation rules (since the graphs GP operates
on are labelled over an infinite label alphabet of integers and strings).
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Fig. 1. A conditional rule schema and one of its applications

Figure 1 shows an example of a conditional rule schema, and a possible result
of its application to a graph. The rule schema consists of the identifier bridge

followed by the declaration of integer variables, the left and right graphs of the
rule schema, the node identifiers 1, 2, 3 specifying which nodes are preserved,
and the keyword where followed by a rule schema condition. Variables are instan-
tiated with values (integers or character strings) in the graph matching process.
Informally, in the application of a rule schema to a graph, a match is found for
an instantiation of the left-hand side, and is replaced with the corresponding
instantiation of the right-hand side. In our example, we have the following in-
stantiation of variables: x 7→ 2, y 7→ 5, z 7→ 4, a 7→ 4, b 7→ 8. Observe that this is
not the only possible instantiation; matches are chosen nondeterministically.

GP allows nodes and edges in rule schemata to be labelled with underscore
delimited sequences, for example, 5 0 and ”York” 1. Sequences can contain items
of type integer and string. They are typically used to encode information into a
graph, for example, to mark a node as reachable, or “tag” a node with an integer
that represents its colour.

In the prototype GP programming system [12], rule schemata are constructed
with a graphical editor. Labels in the left graph may only contain variables or
constants (no composite expressions) because their values at execution time are
determined by graph matching. The condition of a rule schema is a Boolean
expression built from arithmetic expressions and the special predicate edge;
all variables occurring in the condition must also occur in the left graph. The
predicate edge demands the (non-)existence of an edge between two nodes in
the graph to which the rule schema is applied. For example, the expression
not edge(1, 3) in the condition of Figure 1 forbids an edge from node 1 to node



3 when the left graph is matched. The full syntax of conditions is given in
[18]. Technically speaking, a rule schema is applied to a graph according to a
generalisation of the double-pushout approach with relabelling [9].

2.2 Programs

We discuss an example program to familiarise the reader with GP’s features. We
will return to this program later in the paper to prove its correctness.

Example 1 (Colouring). A colouring for a graph is an assignment of colours
(integers) to nodes such that the source and target of each non-looping edge
have different colours. The program colouring in Figure 2, with the command
sequence init!; inc!, produces a colouring for every integer-labelled input graph,
recording colours as tags.

main = init!; inc!
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Fig. 2. The program colouring and one of its executions

The program initially colours each node with 1 by applying the rule schema
init for as long as possible, using the iteration operator ’!’. It then repeatedly
increments the target colour of edges with the same colour at both ends. Note
that this process is nondeterministic: Figure 2 shows an execution producing a



colouring with two colours, but a colouring with three colours could have been
produced for the same input graph.

Control constructs not used in colouring are {r1, . . . , rn}, which denotes the
nondeterministic application of a rule ri from the set, and if C then P else Q

which executes program P if C terminates with output1, and Q otherwise.
A full structural operational semantics is defined for GP in [17]. Each graph

program is assigned a semantic function, which takes a graph as input, and
returns as output the set of all graphs that could result from the execution of
the program to that input graph.

3 Nested Graph Conditions with Expressions

Since the states of graph programs are graphs, and the pre- and postconditions
of Hoare triples describe properties of program states, we require a specification
formalism for precisely describing and reasoning about properties of graphs. The
nested graph conditions of Habel and Pennemann [6] are such a specification for-
malism, expressively equivalent to first-order logic on graphs. Graph conditions
however are unable to finitely express many properties when graphs are labelled
over infinite label alphabets. For example, if we consider graphs labelled over
the set of integers, it is impossible to finitely express a property as simple as
“there exists an integer-labelled node”; we would require the following infinite
graph condition:

∃( 0 ) ∨ ∃( 1 ) ∨ ∃( −1 ) ∨ ∃( 2 ) ∨ ∃( −2 ) ∨ . . .

Since GP’s label alphabet is infinite (it consists of sequences of arbitrary
integers and character strings), we extend the formalism to allow expressions
with variables in labels, and to have a Boolean expression restricting the in-
stantiations of variables; we refer to what results as E-conditions. E-conditions
are able to finitely represent infinite graph conditions. The infinite graph condi-
tion above, for example, expresses the same property as the finite E-condition
∃( x | type(x) = int), where x is a variable that can be instantiated to any
integer.

A simple example of an E-condition is c = ∃( x y
k

), which is read “there
exists at least one non-looping edge”. A graph G would satisfy this E-condition,
denoted G |= c, if variables k, x, and y could be instantiated to labels, which
together with the nodes and edge, form a subgraph of G.

An assignment constraint (Boolean expression) allows one to restrict the
types and values of variable instantiations. For example,

∃( x y
k

| type(x, y) = int ∧ x < y)

is read “there exists at least one pair of adjacent integer-labelled nodes, of which
the label of the target node is larger than that of the source node”.

1 Program C is tested on a copy of the input graph, which is subsequently discarded.



Boolean expressions over E-conditions are also E-conditions. For example,

d = ¬∃( x

k

i

)

is read “there does not exist a node incident to more than one loop”. Suppose
that G |= d. Then it is the case that no instantiation of i, k, and x will give
labels, together with a node and two loops, that form a subgraph of G.

E-conditions may also be nested. For example,

e = ∀(
1

x | type(x) = int,¬∃(
1

x y
k

))

is read “no integer-labelled node has an outgoing edge to another node (with
any label)”. When an E-condition contains nesting, for a graph to satisfy it, we
need to look further than for some simple subgraph. Suppose that G |= e. Then
for every instantiation of x to an integer that, together with the single node,
gives a subgraph of G, there must not be an outgoing edge from that node to
any node in G with a label that y can be instantiated to (i.e. any node).

The formal definition of E-conditions is based on injective graph morphisms
(i.e. structure preserving mappings between graphs), and allows an arbitrary
amount of nesting; technical details can be found in [18].

4 A Hoare Calculus for Graph Programs

We present in this section a system of partial correctness axiom schemata and
inference rules for GP, in the style of Hoare [1], using E-conditions as the as-
sertions. We demonstrate the proof system by proving a property of our earlier
colouring graph program.

First, we discuss what partial correctness means in the sense of graph pro-
grams. In the classical sense, a Hoare triple {s} P {t} with s, t formulas of
predicate logic and P a program fragment, is read “if P is executed when the
program state satisfies s, then should P terminate, the program state will satisfy
t”. The execution of a graph program can follow one of three paths: it termi-
nates with an output graph (referred to as successful termination), it terminates
without an output graph (this is referred to as failure, and occurs when a rule
schema, or a set of rule schemata, cannot be applied to the current graph), or it
does not terminate at all (for example, r! will never terminate if the left graph
of the rule schema is the empty graph ∅). Because of GP’s nondeterminism, all
three outcomes may be possible for the same program and input graph. We con-
sider for partial correctness the successful termination case, in that if a program
does terminate with an output graph, whatever that output graph may be, it
satisfies some property expressed by an E-condition.

Given E-conditions c, d and a graph program P , a triple of the form {c} P {d}
expresses the claim that whenever a graph G satisfies c, then any graph that
results from the application of P to G will satisfy d. The axiom schemata and
inference rules that follow operate on such triples. As in classical Hoare logic [1],
we use the proof system to construct proof trees, combining axioms and inference



rules (an example will follow). We let c, d, e, inv range over E-conditions, P,Q

over arbitrary programs, r, ri over conditional rule schemata, and R over sets of
conditional rule schemata.

[rule]
{Pre(r, c)} r {c}

The axiom [rule] for the application of a single conditional rule schema works
“backwards”. Starting with a rule schema r and E-condition c as a postcondition,
the transformation Pre is used to construct a precondition such that if G |=
Pre(r, c), and the application of r to G results in a graph H, then H |= c. The
transformation Pre is based on graph morphisms and pushout constructions
(see [18]), but informally can be described by the following steps: (1) form a
disjunction of E-conditions over all possible overlappings of E-condition c and
the right graph of rule schema r, (2) shift the disjunction of E-conditions from
the right- to the left-hand side of r, (3) nest this within another E-condition that
is universally quantified over the left graph of r.

We have that Pre(r, c) implies App({r}), where App constructs an E-condition
expressing the weakest property that must be satisfied for a given rule schema
set to be applicable to a graph (see below). The transformation Pre considers
applicability, since otherwise, we would have to deal with failing computations.

Whereas assignment is basic to imperative programs and assignment axioms
core to their correctness proofs, rule application is basic to graph programs and
the [rule] axiom core to their correctness proofs.

[ruleset1]
{¬App(R)} R {false}

The inference rule [ruleset1] is applied in the case that no rule schema r ∈ R
can be applied to the graph. App takes as input a set R of conditional rule
schemata, and transforms it into an E-condition describing the weakest property
that a graph G must satisfy for R to be applicable to it. If R is applicable
to G, then at least one rule schema r ∈ R satisfies the following: (1) it has
an instantiation of variables such that its left-hand graph is isomorphic to a
subgraph of G, (2) it can be applied to G without leaving dangling edges (i.e.
edges which are not incident to nodes at both ends), and (3) the rule schema
condition evaluates to true. The postcondition false cannot be satisfied by any
graph.

{c} r1 {d} . . . {c} rn {d}
[ruleset2]

{c} {r1, . . . , rn} {d}

The inference rule [ruleset2] is applied when the non-applicability of a rule
schema set is not implied by the precondition. Since the rule schema to be applied
is nondeterministically chosen from the set, it must be shown that the successful
termination of any rule schema in the set results in a graph satisfying the desired
postcondition, d. Note that the transformation App does not appear, since its
effects are encapsulated by the transformation Pre in the axiom [rule].



{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

The sequential composition rule [comp] follows its counterpart for imperative
programming languages, in that we have to find an appropriate intermediate
assertion, the E-condition e.

{c′} P {d′}
[cons] c =⇒ c′ d′ =⇒ d

{c} P {d}

Similar to its classical counterpart, the rule of consequence [cons] allows us to
strengthen the precondition and weaken the postcondition (or replace them with
equivalent assertions), provided that the side conditions c =⇒ c′ and d′ =⇒ d

are valid (mechanically proving such implications of E-conditions to be valid
is a problem we have not yet addressed, however, Pennemann in [14,15] has
developed a resolution-like theorem prover for implications of graph conditions).

{c ∧ App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]

{c} if R then P else Q {d}

The conditional rule [if] formalises a case distinction based on the applica-
bility of R to the input graph, utilising the transformation App.

{inv} R {inv}
[!]

{inv} R! {inv ∧ ¬App(R)}

The as-long-as-possible iteration rule [!] states that if an assertion inv (for
invariant) is satisfied after each application of R, then once the iteration has
ended, the graph will still satisfy inv. Additionally, since R is applied for as-
long-as-possible, we can also deduce that R is no longer applicable to the graph,
hence ¬App(R) in the postcondition.

Note that two of the proof rules deal with programs that are restricted in
a particular way: both the condition C of a branching command if C then

P else Q and the body P of a loop P ! must be rule-set calls, that is, sets of
conditional rule schemata. We gain from this restriction definability of the trans-
formations Pre and App, but we hope to be able to modify the transformations
in the future to allow arbitrary programs as input. However, despite the incon-
venience of the restrictions, the computational completeness of the language is
not affected, because in [8] it is shown that a graph transformation language is
complete if it contains single-step application and as-long-as-possible iteration
of (unconditional) sets of rules, together with sequential composition.

Example 2 (Colouring). Figure 3 is a proof tree for the colouring program
of Figure 2. It proves that if colouring is executed on a graph in which the
node labels are exclusively integers, then any graph resulting will have the prop-
erty that each node label is an integer with a colour attached to it, and that
adjacent nodes have distinct colours. That is, the proof tree proves the triple
{¬∃( a | type(a) 6= int)} init!; inc! {∀( a

1

,∃( a
1

| a = b c ∧ type(b, c) =

int)) ∧ ¬∃( x i y i
k

| type(i, k, x, y) = int)}.



[rule]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[rule]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
{c} init!; inc! {d ∧ ¬App({inc})}

c = ¬∃( a | type(a) 6= int)

d = ∀( a
1

, ∃( a
1

| a = b c ∧ type(b, c) = int))

e = ∀( a
1

, ∃( a
1

| type(a) = int) ∨ ∃( a
1

| a = b c ∧ type(b, c) = int))

¬App({init}) = ¬∃( x | type(x) = int)

¬App({inc}) = ¬∃( x i y i
k

| type(i, k, x, y) = int)

Pre(init, e) = ∀( x
1

a
2

| type(x) = int, ∃( x
1

a
2

| type(a) = int)

∨ ∃( x
1

a
2

| a = b c ∧ type(b, c) = int))

Pre(inc, d) = ∀( x i y i a

1 2 3

k
| type(i, k, x, y) = int,

∃( x i y i a

1 2 3

k
| a = b c ∧ type(b, c) = int))

Fig. 3. A proof tree for the program colouring of Figure 2

The following theorem is our main technical result.

Theorem 1. The proof system comprising [rule], [ruleset1], [ruleset2], [comp],
[cons], [if], and [!] is sound for graph programs in the sense of partial correctness.

This theorem is proven in [18], by showing the soundness of each of the axioms
and inference rules with respect to the structural operational semantics of GP.

5 Conclusion

We have presented the first Hoare-style verification calculus for an implemented
graph transformation language. This required us to extend the nested graph
conditions of Habel, Pennemann, and Rensink with expressions for labels and
assignment constraints, in order to deal with GP’s powerful rule schemata and
infinite label alphabet. We have demonstrated the use of the calculus by proving
the partial correctness of a nondeterministic colouring program.

Future work will investigate the completeness of the calculus. Also, we in-
tend to add termination proof rules in order to verify the total correctness of
graph programs. Finally, we will consider how the calculus can be generalised



to deal with GP programs in which the conditions of branching statements and
the bodies of loops can be arbitrary subprograms rather than just sets of rule
schemata.
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ments which helped to improve the presentation of this paper.
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