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ABSTRACT
The rapid progress of autonomous vehicles (AVs) has brought the
prospect of a driverless future closer than ever. Recent fatalities,
however, have emphasized the importance of safety validation
through large-scale testing. Multiple approaches achieve this fully
automatically using high-fidelity simulators, i.e., by generating
diverse driving scenarios and evaluating autonomous driving sys-
tems (ADSs) against different test oracles. While effective at finding
violations, these approaches do not identify the decisions and ac-
tions that caused them—information that is critical for improving
the safety of ADSs. To address this challenge, we propose ACAV,
an automated framework designed to conduct causality analyses
for AV accident recordings in two stages. First, we apply feature
extraction schemas based on the messages exchanged between
ADS modules, and use a weighted voting method to discard frames
of the recording unrelated to the accident. Second, we use safety
specifications to identify safety-critical frames and deduce causal
events by applying CAT—our causal analysis tool—to a station-time
graph. We evaluated ACAV on the Apollo ADS, finding that it can
identify five distinct types of causal events in 93.64% of 110 accident
recordings generated by an AV testing engine. We further evaluated
ACAV on 1206 accident recordings collected from versions of Apollo
injected with specific faults, finding that it can correctly identify
causal events in 96.44% of the accidents triggered by prediction
errors, and 85.73% of the accidents triggered by planning errors.
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1 INTRODUCTION
Autonomous Vehicles (AVs) are set to bring about a paradigm shift
in transportation. AVs operate through the use of advanced Au-
tonomous Driving Systems (ADSs), which eliminate the need for
human drivers to control the vehicle’s movements. ADSs are con-
sidered highly security-critical systems, as malfunctions can result
in severe consequences [1, 4, 22]. For example, a minor error in
trajectory prediction can lead to potentially hazardous or even fatal
situations for passengers, other road users, and pedestrians. Thus, it
is imperative for AV developers to subject ADSs to rigorous testing
to ensure their accuracy and reliability. Given that on-road testing
suffers from several limitations (such as safety risks and high ex-
penses), simulation-based testing in high-fidelity simulators such
as SVL [49] and CARLA [23] has emerged as a popular approach
for evaluating AVs.

Many researchers utilize search-based [7–9, 24, 47, 64] and sam-
pling techniques [15, 28, 33, 56, 61, 62] to generate and execute test
cases against a set of testing oracles in simulation environments.
This provides a controlled and repeatable means of evaluating AVs
without the risks associated with real-world testing. For instance,
AV-Fuzzer [38] uses fuzzing to generate scenarios that cause safety
violations such as near- and actual collisions. LawBreaker [52], also
based on fuzzing, further evaluates AVs against specifications of
national traffic laws (e.g., rules for crossing junctions). While these
methods are effective at finding different violations, they typically
do not provide insight into the specific decisions and actions of
the AV that ultimately caused the violations. Such information is
critical for engineers to improve the safety and reliability of AVs but
is time-consuming and laborious to extract manually, especially in
large-scale testing frameworks. This problem has been emphasized
in a recent study [39]: given the vast amounts of driving recordings
collected during testing, there is an urgent need for automated
tools to support ADS engineers, e.g., in tasks such as clipping and
interpreting.
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Causality analysis has been proposed within the software engi-
neering community as a means to assist developers in deducing
the underlying causes of faulty behaviors observed in a failed test
case. This technique has shown notable effectiveness in analyzing
complex systems [11, 18, 19, 59]. Unfortunately, given an AV acci-
dent recording extracted from a simulator, it is non-trivial to apply
existing causality analysis techniques due to two main challenges.
First, ADSs consist of multiple independent, decoupled modules
that communicate via message passing. Thus, minor faults in one
module can eventually propagate into serious faults in other mod-
ules. For instance, an incorrect trajectory prediction may be used
by an AV’s planning module in a way that leads to an accident: in
this context, the planning module is not solely to blame. Second,
the analysis space of a typical accident recording is huge, requiring
new approaches for identifying the accident-related segments that
should be focused on.

To address these challenges, we present ACAV, a framework for
Automatic Causality analysis of AV accident recordings. Our ap-
proach consists of two stages: accident recording simplification and
causality analysis, summarized in the high-level workflow diagram
of Figure 1. In the first stage, we define and apply feature extraction
schemas based on the messages exchanged between ADS modules.
These schemas are used to vectorize information about the map,
as well as the AV’s perception, prediction, and planning. We then
propose a weighted voting method to integrate the slicing plans
generated by these schemas, allowing for segments unrelated to
the safety violation to be discarded. In the second stage, we identify
safety-critical frames using an a priori method based on safety spec-
ifications extracted from the driver’s handbook and traffic laws of
California. Next, we apply our novel causality analysis tool, CAT, to
identify the causal events of an accident by analyzing the Station-
Time graph (ST graph). In conclusion, our framework is designed
to identify the safety-critical frames that brought about an accident,
and to generate detailed reports enumerating potential causes. This
functionality empowers engineers to gain a comprehensive under-
standing of the accident dynamics without first needing to replay
entire recordings.

To evaluate the effectiveness of our framework, we implemented
it for Apollo 7.0 [2] and the SVL simulator [49], which are widely
used tools in the field of autonomous driving research and develop-
ment. Using an AV testing engine [52], we collected a total of 110
accident recordings, including accidents involving intersections,
merging, and tailgating. We applied ACAV to vectorize and simplify
these recordings, finding that ACAV achieved a 62.23% reduction
ratio rate without discarding critical frames, demonstrating its ef-
fectiveness in simplifying accident recordings. Upon analyzing the
simplified recordings with CAT, our approach identifies five distinct
types of causal events in 93.64% of the recordings, including in-
correct priority prediction (found 26 times), incorrect trajectory
prediction (51 times), improper behavioral planning (17 times), un-
safe motion planning (67 times), and vehicle out-of-control (103
times). Finally, we further evaluated ACAV on 1206 accident record-
ings collected from versions of Apollo injected with specific faults,
finding that it can correctly identify causal events in 96.44% of the
accidents triggered by prediction errors, and 85.73% of the accidents
triggered by planning errors.

Our website [6] provides videos of multiple accidents involv-
ing the Apollo ADS, together with the complete accident reports
generated by ACAV, as well as our source code.

Overall, we make the following contributions:
• Feature extraction schemas for vectorizing map, perception,
prediction, and planning information from ADS messages
in AV accident recordings.
• A mechanism for identifying and discarding recording seg-
ments unrelated to the accident.
• A tool for identifying safety-critical frames from an accident
recording by leveraging ST graphs.
• ACAV, which to the best of our knowledge, is the first modular
framework for AV accident analysis and explanation.
• An implementation for Apollo 7.0 and SVL that is able to
identify five types of causal faults in AV accident recordings.

The paper is organized as follows. In Section 2, we review some
essential background and present a motivational example. Section 3
introduces the design of ACAV, including the detailed algorithms of
its two stages. Section 4 evaluates whether ACAV achieves its goal
of identifying causal events from AV accident recordings. Finally,
Section 5 compares our approach against some related work, before
Section 6 concludes.

2 BACKGROUND AND EXAMPLE
2.1 Multi-Module ADSs
The ADSs of AVs are composed of various modules, including per-
ception, localization, prediction, planning, and control. These mod-
ules utilize multiple sensors, such as cameras, LiDAR, GNSS, and
IMU, that capture raw data (e.g., images, 3D point clouds) about the
AV’s state as well as the environment it is operating in. To facili-
tate collaboration among the modules, industrial-level ADSs use a
publish-subscribe (i.e., message-based) model for communication.
Each module subscribes to one or more channels in the ADS to
obtain the required inputs and publishes its output as a message to
the corresponding channels.

Specifically, the localization module constantly processes data
collected from the GPS, IMU, and (sometimes) LiDAR, then pub-
lishes messages containing information about the vehicle’s position,
orientation, and speed. The perception module receives this data,
along with additional information from cameras and radars, then
publishes data about perceived obstacles in front of the AV. The pre-
diction module receives the messages published by the perception
and localization modules to predict the trajectory of the detected
obstacles, and publishes the results to the prediction channel. The
planning module subscribes to messages from all of the previous
modules to make driving decisions, e.g., determining the appropri-
ate speed and acceleration. Finally, the control module converts the
trajectory points generated by the planning module into control
commands for the chassis, such as steering, throttle, and brake, to
ensure the vehicle travels according to the planned trajectory.
Planning module. The ADS’s planning module performs three
main functions: route planning, behavioral planning, and motion
planning [31, 45, 50]. Given a destination, route planning selects
a route by choosing a list of lanes and junctions from the map.
This route serves as the reference line for behavioral planning and
motion planning. Behavioral planning is responsible for making
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Figure 1: Overview of ACAV: the first stage vectorizes data exchanged between ADS modules and discards recording segments
irrelevant to the accident; the second stage performs a causality analysis using the CAT tool

Figure 2: A visual example of an ST graph

high-level driving decisions based on the current driving scenario
to interact with pedestrians and other vehicles safely. For instance,
when the AV detects a construction area ahead of its lane, behav-
ioral planning needs to consider both the dynamic behavior of
surrounding traffic participants and the road conditions to decide
how to bypass it, e.g., by changing lanes. Lastly, motion planning
translates high-level decisions into a series of waypoints as part of
an executable trajectory, which can be translated into throttles and
steering commands by the control module.

Behavioral and motion planning are critical tasks of the planning
module, translating the path obtained from route planning into a
series of waypoints by calculating specific speed and acceleration
plans. This ensures that the AV interacts safely and comfortably
with other traffic participants in the current scenario. Various plan-
ning techniques employ distinct approaches to integrate the three
essential functions. For example, the lattice planner [57], a graph
search-based technique, performs behavioral planning and mo-
tion planning implicitly and simultaneously under the guidance
of well-designed cost functions. In contrast, the EM planner [26]
performs behavioral planning and motion planning explicitly and
step-by-step. In addition, the Frenet frame method is a well-known
approach for describing the motion and trajectories of vehicles,
which decouples vehicles’ lateral and longitudinal motion, corre-
sponding to the lateral and longitudinal control. The longitudinal
behavioral and motion planning can be visualized effectively in a
Station-Time graph (ST graph), where time is the horizontal axis,
the planned longitudinal trajectory distance is the vertical axis and
the planned longitudinal trajectory is a curve, as shown in Figure 2.
Additionally, the curve’s gradient represents the longitudinal speed
of the vehicle.

2.2 Motivating Example
To introduce the concept of accident causality and demonstrate
how our framework works, we elaborate with an accident driving
recording collected from version 7.0 of Apollo. As illustrated in

Figure 3, we summarize the scenario in an accident driving record-
ing as six critical scenes, the demo video of which can be found
on page 3 of ‘Video Demos’ on [6]. Initially, the AV drove alone
without encountering any traffic signals (Scene 3a). However, it
later detected traffic signals and non-player characters (NPCs) as it
was approaching an intersection (Scene 3b). The AV made an ‘over-
take’ decision with respect to NPC 4 and executed it (Scenes 3c–3d).
After overtaking NPC 4, it interacted with NPC 2, making a ‘yield’
decision, but still collided with NPC 2 (Scenes 3e–3f).
Accident-related recording segment.As we described above, the
AV did not detect any NPCs nor was it near any NPCs in Scenes 3a–
3b. In contrast to the other four scenes, these first two had no
impact on the accident. Furthermore, during simulation tests, the AV
persisted in moving forward after a collision, rather than stopping;
this behavior, too, had no influence on the accident. Given that
our objective is to perform accident analysis, our framework is
designed to automatically identify and exclude such segments that
are unrelated to the accident. The remaining segments are then
fed into the causality analysis stage of our framework. For this
recording, ACAV can significantly reduce its length from 17 seconds
to 4 seconds, without removing any critical frames. This reduces
the workload of ADS engineers who can then immediately focus
on the most important parts of the recording.
Safety-critical frames. As depicted in Scene 3c, the AV made an
‘overtake’ decision with respect to NPC 4 near the intersection.
This decision was unsafe because it violates traffic regulations
and increases the risk of accidents. Our framework uses a priori
knowledge to label frames containing potential accident risks, such
as this one, as safety-critical frames. Moreover, each of the frames
marked as safety-critical (e.g., Scenes 3c–3e) will be individually
inspected by our framework.
Causality analysis. Our framework can automatically identify
causal events in an accident recording, as shown in Table 1. Accord-
ing to the table, the AV chose to overtake NPC 4 at the intersection
due to failing to predict NPC 2’s trajectory (Scenes 3c–3d). When
the AV finally correctly predicted the trajectory of NPC 2 (Scene 3e),
it was traveling at a speed of 39km/h (approximately 10.83m/s) and
was less than 14 meters away from the NPC. Despite making the
appropriate ‘yield’ decision, there was insufficient time and space
to carry it out, resulting in a collision. The causal factors of this
accident can be attributed to the incorrect priority and trajectory
prediction by the prediction module, the flawed decision made by
the planning module, and the vehicle’s skidding.
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(a) (b) (c) (d) (e) (f)

Figure 3: Motivating example: six key scenes from a recording of an AV accident

3 FRAMEWORK DESIGN
As illustrated in Figure 1, our framework consists of two main
stages: accident recording simplification and causality analysis. In
the following sections, we provide a detailed explanation of the
two stages of our framework and present an implementation of it
for Baidu Apollo 7.0. Our framework is available online [6].

3.1 Stage #1: Accident Recording Simplification
In the first stage, the primary objective is to extract short segments
from a long driving recording related to an accident. The idea is to
provide coarse-grained filtering based on the scenario information.
To accomplish this, we partition the driving recording into a series
of frames and assign three vectors to each frame to capture informa-
tion on the current scenario, ranging from the environment to the
maneuvers and status of the AV and NPCs. We use a scenario-based
recording segmentation technique to merge the frames, and subse-
quently, we use specifications derived from the driver handbook
and traffic laws of California to identify segments of the recording
that are relevant to accidents.
Data Collection. A prerequisite for our approach is to collect sev-
eral accident driving recordings, which requires generating numer-
ous testing scenarios for testing ADSs holistically against different
safety oracles. To satisfy this prerequisite, we adapted the AVUnit
framework [63], which provides domain-specific languages (DSLs)
for specifying testing scenarios and oracles, as well as a fuzzing
engine for obtaining effective test cases. Our adaptation extends
the fuzzing engine by adding a recorder that captures the corre-
sponding driving recording for each test case, i.e., each test case is
captured in a single recording file. The set of initial configurations
we used in our experiments includes different combinations of start-
ing points, destinations, and NPCs. To handle the varying routes
of all the combinations, the duration of each recording file was set
at 60 seconds, which can cover all possible durations of a single
test case. We ran the fuzzing engine for two days, generating 1260
test cases, including 131 accident test cases. The combined length
of all these recordings exceeded 21 hours. After the termination of
the fuzzing algorithm, we selected 110 accident driving recordings
based on the output of AVUnit and classified them into three cate-
gories (intersection, merging, and rear-end accidents), excluding
21 accident test cases in which the car crash occurred after the AV
stopped at its destination or the AV got hit from behind by an NPC.

Table 1: Results of a causality analysis for the example

Time Accident causal events Details

0s AV keeps safe distance
from NPCs –

0.4s Wrong motion planning;
AV skidding sometimes AV’s planning speed is too fast or too slow.

0.8s
Wrong planning caused
by the wrong prediction;
AV skidding sometimes

For NPC 2: wrong priority prediction.
For NPC 4: improper ‘overtake’ decision.
AV’s planning speed is too fast or too slow.

2.6s Wrong motion planning;
AV skidding sometimes AV’s planning speed is too fast or too slow.

4.3s Accident!

Message Alignment and Vectorization. In a multi-module ADS,
the modules collaborate by asynchronously exchanging and pro-
cessing messages. The content of each message varies depending
on the module that published it. To facilitate causality analysis, we
select and align messages from the communication channels of the
map, localization, perception, prediction, and planning modules,
each of which have different publishing frequencies. We divide the
recording into several frames, each of which has a duration of 0.08s
(chosen because the localization module has the fastest frequency,
publishing messages every 0.08s). If these channels publish mes-
sages within the frame, we hold the messages and align them to the
beginning of the frame. If a channel does not publish any messages
within the frame, we copy the last message generated before it to
the beginning of the frame.

In the vectorization phase, our primary objective is to extract
information related to accidents, which can be associated with the
map, perception, prediction, and planning modules in the ADS. To
comprehensively capture information from across these modules’
messages, we have designed three feature extraction schemas: one
for the map, one for perception and prediction, and one for planning.
Each schema includes factors that impact the AV’s planning, or
properties that reflect its current planning status.

The map schema contains information on whether the AV is at
a junction, crosswalk, or near a stop sign, as well as the color of
the perceived traffic signal. The perception and prediction schema
includes four lists of NPCs, indicating which NPCs the AV is ap-
proaching, which are in close proximity, and which are predicted as
ones to take ‘caution’ of or ‘ignore’. The planning schema includes
information on the main driving decision the AV currently executes,
the operational design domain (ODD), motion, and whether it is
safe according to the responsibility-sensitive safety (RSS) rules [51].
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It is worth noting that these are fundamental components among
industry-level ADSs such as Autoware and Apollo. Specifically, the
ODD defines the specific operating conditions and scenarios in
which an AV is designed to function safely and effectively. For in-
stance, Autoware’s ODDs include ‘Lane Following’, ‘Lane Change,’
and ‘Pull Out,’ among other scenarios, each suggesting the ap-
propriate scene module in Autoware that should be launched to
handle the specific driving situation. Similarly, Apollo’s ODDs con-
sist of scenarios such as ‘Lane Change,’ ‘Lane Borrow,’ and ‘Path
Assess,’ indicating the corresponding decider/optimizer in Apollo
that should be activated to make informed driving decisions. To
ensure safety and responsible behavior, the planning schema uti-
lizes RSS rules, which are designed to formalize concepts such as
dangerous situations, appropriate responses, and the allocation of
blame in a mathematically rigorous manner. Our framework con-
verts each frame into three feature vectors based on these three
schemas. Each feature vector contains specific semantic properties,
with each dimension representing a particular attribute.

For instance, in the feature vector for the map schema, we have
four dimensions indicating whether the AV is: 1. Near an intersec-
tion (The distance between the AV and the intersection is less than
5 meters); 2. Near a crosswalk (The distance between the AV and the
crosswalk is less than 5 meters); 3. Near a stop sign (The distance
between the AV and the stop sign is less than 5 meters); 4. Detected
traffic signals. Thus, the vector ⟨𝐹𝑎𝑙𝑠𝑒, 𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒, 𝑁𝑜𝑛𝑒⟩ indicates
that in the current frame, the AV is approaching a stop sign, not in
an area near an intersection or a crosswalk, and not encountering
any traffic signals. In this way, we transform the driving recording
into a list of feature vectors while preserving the abstract semantic
information of each frame, facilitating subsequent segmenting and
pruning.
Segmenting and Pruning.After the frame vectorization stage, the
framework segments the recording by comparing the similarity of
consecutive feature vectors. The idea is to group together sequential
frames with identical feature vectors into a single segment. For
example, if the AV drives on a road segment for 100 uninterrupted
frames, then the feature vectors of these 100 frames are the same,
and they will be clustered as a single segment based on the static
map environment schema. Our framework generates segmentation
plans for each of the three types of vector schemas previously
described. These segmentation plans fuse vectors together using
a weighted voting method that determines the optimal clipping
point. For each frame, a general voting function can be defined for
any weighted combination of feature vectors. Let 𝑤𝑐 denote the
weighted value of 𝑐 feature vectors, and 𝑣𝑐 denote the vote by the 𝑐
feature vectors. Let

𝑣𝑜𝑡𝑖𝑛𝑔(𝑣𝑚𝑎𝑝 , 𝑣𝑝𝑒𝑟𝑐 , 𝑣𝑝𝑟𝑒𝑑 ) :=
∑︁
𝑐∈𝐶

𝑤𝑐 × 𝑣𝑐 ≥
1
2

∑︁
𝑐∈𝐶

𝑤𝑐 (1)

where𝐶 = {𝑚𝑎𝑝, 𝑝𝑒𝑟𝑐, 𝑝𝑟𝑒𝑑}, which returns𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒 , indicat-
ing (respectively) whether the current vector should be deemed as
a clipping point (i.e., last frame of the segment) or not. The weight
of the vote by each category is discussed in Section 4.2.1.

Numerous AV accident reports indicate that most accidents hap-
pen in specific contexts, e.g., at intersections, or when there are
multiple traffic participants [20, 27, 55]. Armedwith this knowledge,
our approach creates an overapproximation of relevant frames to

narrow down our focus to the most crucial situations. To achieve
this, we seek out and discard irrelevant frames by analysing static
map environments as well as perception and prediction informa-
tion. To classify a frame as irrelevant, we consider several factors.
First, we check if the static environment of the frame includes a
junction, a crosswalk, or a stop sign. Next, we verify that the AV
is neither approaching nor near any NPC in the frame. Finally, we
ensure that the AV does not predict a ‘caution’ or ‘ignore’ prior-
ity for any NPC. If all of these conditions are met, we classify the
frame as an irrelevant frame. To determine whether to discard a
segment 𝑆 , we count the irrelevant frames within it using function
𝑐𝑜𝑢𝑛𝑡 (𝑆), and compute the irrelevant frame ratio 𝑟𝑚 =

𝑐𝑜𝑢𝑛𝑡 (𝑆 )
𝑙𝑒𝑛 (𝑆 ) . If

𝑟𝑚 is larger than the threshold 𝑡ℎ𝑚 , 𝑆 will be discarded, otherwise,
it will be kept. We discuss the selection of a particular threshold
𝑡ℎ𝑚 in Section 4.2.1.

Algorithm 1 summarises the steps of our segmenting and pruning
method. Specifically, given three categories of feature vectors of
an aligned recording, for a feature vector of a frame within it, if
the vector is different from its previous one, then we deem that the
frame gets one vote by one of the three feature vector categories
(Lines 5–10). After collecting votes from all three categories, we
perform voting (Line 11) to decide whether to slice in this frame
(Line 12–14), the definition of which is shown in Equation 1, and the
weight selection of which is discussed in Section 4.2.1. We prune
the accident-related segments by examining the segments (working
backwards) at Lines 17–26. The last segment is deemed as a part of
the accident-related segment (Line 17). For other segments, we find
the irrelevant map or perception vectors and determine whether to
discard them. For a non-irrelevant segment, we merge it into 𝑆𝑎 if
𝑆𝑎 follows it, as shown in Lines 21–25. We discuss the selection of
a threshold value in Section 4.2.1.

3.2 Stage #2: Causality Analysis
In the second stage, we automatically analyze the accident-related
segments that were generated in the first stage to identify potential
causes of the accident. We utilize automotive safety specifications
from California’s driver handbook [16] and traffic laws [17] to
identify safety-critical frames that may have contributed to the
accident. Next, we implement a causal analysis tool, CAT, that works
by examining speed planning. For frames that are identified as
suspicious, CAT compares their current speed planning and actual
trajectory to deduce the causal events of the accident. This process
enables our framework to effectively identify the causes of the
accident and provide valuable insights for future improvements.
Potential Safety-Critical Frame Identification. In order to iden-
tify safety-critical frames in an accident-related driving recording
segment, our framework uses a frame checker that utilizes a priori
knowledge, i.e., a list of specifications extracted from background
knowledge. In particular, we examine California’s driver hand-
book [16]—published by the Department of Motor Vehicles (DMV)—
and traffic laws [17], to obtain a list of specifications for each stage.
These specifications include identifying critical obstacles, improper
priority prediction, and driving decision-making.

In order to ensure compliance with the rules outlined in the
driver’s handbook [16], it is necessary to have a robust specification
language that allows us to precisely describe these rules. To this end,
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Algorithm 1: Segmenting and Pruning
Input:𝑉 : all the three categories of feature vectors of the original

aligned recording before the accident with length 𝑛;
Output: 𝑆𝑎 : the reduced accident-related segment;

1 𝑆𝑡 ← ∅;
2 𝑠𝑠 ← 1;
3 𝑠𝑒 ← 0;
4 for 𝑖 ← 2 to 𝑛 do
5 𝑣𝑚𝑎𝑝 ← 0; 𝑣𝑝𝑒𝑟𝑐 ← 0; 𝑣𝑝𝑙𝑛 ← 0 ;
6 for c in {𝑚𝑎𝑝, 𝑝𝑒𝑟𝑐, 𝑝𝑟𝑒𝑑 } do
7 if 𝑉𝑐 [𝑖 ] ≠ 𝑉𝑐 [𝑖 − 1] or 𝑖 == 𝑛 then
8 𝑣𝑐 ← 1;
9 end

10 end
// See Section. 4.2.1 for voting method

11 if voting(𝑣𝑚𝑎𝑝 , 𝑣𝑝𝑒𝑟𝑐 , 𝑣𝑝𝑙𝑛) then
12 𝑠𝑒 ← 𝑖 ;
13 𝑆𝑡 .𝑝𝑢𝑠ℎ (𝑉 [𝑠𝑠 : 𝑠𝑒 ] ) ;
14 𝑠𝑠 ← 𝑖 ;
15 end
16 end
17 𝑆𝑎 ← 𝑆𝑡 .𝑝𝑜𝑝 ( ) ;
18 while 𝑆𝑡 .𝑖𝑠𝑁𝑜𝑡𝐸𝑚𝑝𝑡𝑦 ( ) do
19 𝑆𝑐𝑢𝑟𝑟 ← 𝑆𝑡 .𝑝𝑜𝑝 ( ) ;
20 𝑟𝑚 ← 𝑐𝑜𝑢𝑛𝑡 (𝑆𝑐𝑢𝑟𝑟 )

𝑙𝑒𝑛 (𝑆𝑐𝑢𝑟𝑟 ) ;
// See Section. 4.2.1 for threshold

21 if 𝑟𝑚 ≤ 𝑡ℎ𝑚 then
22 if 𝑆𝑎 is succeeded by 𝑆𝑐𝑢𝑟𝑟 then
23 𝑆𝑎 ← 𝑆𝑐𝑢𝑟𝑟 + 𝑆𝑎 ;
24 end
25 end
26 end
27 return 𝑆𝑎

Table 2: State variables in the specification language

Variable Type Remarks
𝑥.𝑠𝑝𝑑 Number Speed of vehicle x
𝑥.𝑜𝑛𝐽 𝑐𝑡 Bool True if and only if the vehicle x is on a junction

𝑥.𝑜𝑛𝐶𝑠𝑤𝑘 Bool True if and only if the vehicle x is on a crosswalk
𝑥.𝑝𝑟𝑒𝑑𝑇𝑟𝑎𝑗 Waypoints vehicle x’s predicted trajectory by the EV
𝑥.𝑖𝑠𝑃𝑒𝑑 Bool True if and only if the vehicle x is a pedestrian
𝑥.𝑖𝑠𝐵𝑐𝑦𝑐𝑙 Bool True if and only if the vehicle x is a bicyclist
𝑥.𝑏ℎ𝑛𝑑𝐸𝑉 Bool True if and only if the vehicle x is in an area behind

the EV
𝑥.𝑏𝑙𝑛𝑑𝐸𝑉 Bool True if and only if the vehicle x is in the blind area

of the EV

we have adopted a specification language based on propositional
logic. The specification language consists of propositions (based on
a set of pre-defined variables), as well as the usual logical connectors.
Before introducing the specifications, we first introduce the pre-
defined variables, which can be organized into three categories:
state variables, deviation variables, and maneuver variables.

Firstly, the state variables describe the states of vehicles. Table 2
lists a subset of these variables and their usage in describing vehicle
properties. For instance, suppose there is an NPC 𝑛𝑝𝑐 driving near
a junction with a speed of 5m/s to the front-left of the AV, then
𝑛𝑝𝑐.𝑠𝑝𝑑 is 5m/s, 𝑛𝑝𝑐.𝑜𝑛𝐽𝑐𝑡 is 𝑇𝑟𝑢𝑒 , and 𝑛𝑝𝑐.𝑝𝑟𝑒𝑑𝑇𝑟𝑎 𝑗 contains the

Table 3: Deviation variables in the specification language

Variable Type Remarks
𝑇ℎ𝑒𝑟𝑟 Number The threshold of the error of trajectory prediction

𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑 Number The maximum speed limit of a road segment
𝑀𝑖𝑛𝐵𝑜𝑢𝑛𝑑 Number The minimum speed limit of a road segment
𝑑𝑖𝑠𝑡 (𝑥, 𝑦) Number The distance between two objects 𝑥 and 𝑦

𝐸𝑟𝑟 (𝑡 ) Number The error of the trajectory prediction 𝑡
𝐶𝑟𝑖𝑡𝑂𝑏𝑠𝑡 (𝑥 ) Bool True if and only if 𝑑𝑖𝑠𝑡 (𝑒𝑣, 𝑥 ) < 3 × 𝑒𝑣.𝑠𝑝𝑒𝑒𝑑 for

an NPC 𝑥

Table 4: Maneuver variables in the specification language

Variable Type Remarks
𝑃𝑟𝑖𝑜𝐼𝑔𝑛 (𝑥 ) Bool True if and only if the EV predicts NPC 𝑥 as an

"ignore" priority
𝐷𝑒𝑐𝑛𝐼𝑔𝑛 (𝑥 ) Bool True if and only if the EVmakes an "ignore" decision

on NPC 𝑥

𝐷𝑒𝑐𝑛𝐹𝑙𝑤 (𝑥 ) Bool True if and only if the EVmakes an "follow" decision
on NPC 𝑥

𝐷𝑒𝑐𝑛𝑌𝑙𝑑 (𝑥 ) Bool True if and only if the EV makes an "yield" decision
on NPC 𝑥

𝐷𝑒𝑐𝑛𝑂𝑣𝑡𝑘 (𝑥 ) Bool True if and only if the EV makes an "overtake" deci-
sion on NPC 𝑥

waypoints in the predicted trajectory of 𝑛𝑝𝑐 . The other variable
values of type 𝑏𝑜𝑜𝑙 are all 𝐹𝑎𝑙𝑠𝑒 .

Secondly, Table 3 summarizes deviation variables to specify var-
ious deviation calculations. Here, 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑 and 𝑀𝑖𝑛𝐵𝑜𝑢𝑛𝑑 rep-
resent the upper and lower speed limits of the road on which the
AV is traveling. Functions 𝑑𝑖𝑠𝑡 (𝑥,𝑦) and 𝐸𝑟𝑟 (𝑡) represent (respec-
tively) the distance between two objects and the error in trajectory
prediction. Additionally, we define the function 𝐶𝑟𝑖𝑡𝑂𝑏𝑠𝑡 (𝑥) to fil-
ter out the NPCs that need to be focused on in a given scenario.
The function 𝐶𝑟𝑖𝑡𝑂𝑏𝑠𝑡 (𝑥) outputs 𝑇𝑟𝑢𝑒 if and only if the distance
between object 𝑥 and the AV is less than three times the current
speed of the AV.

Finally, the (subset of) maneuver variables presented in Table 4
reflect the prediction and planning status of the AV. These variables
are directly extracted from prediction and planning messages. For
example, if the AV is closely and cautiously following an NPC 𝑛𝑝𝑐 ,
then 𝑃𝑟𝑖𝑜𝐼𝑔𝑛(𝑛𝑝𝑐) would be 𝐹𝑎𝑙𝑠𝑒 , and 𝐷𝑒𝑐𝑛𝐹𝑙𝑤 (𝑛𝑝𝑐) would be
𝑇𝑟𝑢𝑒 . The remaining maneuver variables would be set to 𝐹𝑎𝑙𝑠𝑒 .
Here, the AV’s priority prediction for an NPC can be roughly di-
vided into three types: ‘caution’ for a critical NPC, ‘ignore’ for an
immaterial NPC, and ‘normal’ for the rest. The AV’s driving deci-
sion towards an NPC can be summarized as a list of maneuvers,
including ‘ignore’, ‘stop’, ‘follow’, ‘yield’, ‘overtake’, ‘nudge’, etc.

With the defined variables, we can now describe the specifica-
tions checked by our framework. Specifically, it assesses the cor-
rectness of the AV’s prioritization, trajectory prediction, driving
decisions related to NPCs, and speed planning. For instance, to iden-
tify an improper ‘overtake’ decision, we define the specification as:
𝐼𝑚𝑝𝑟𝑜𝑝𝑂𝑣𝑡𝑘𝐷𝑒𝑐𝑛(𝑥) := (𝑎𝑣 .𝑂𝑛𝐽𝑐𝑡 ∨ 𝑎𝑣 .𝑂𝑛𝐶𝑠𝑤𝑘) ∧𝐷𝑒𝑐𝑛𝑂𝑣𝑡𝑘 (𝑥),
which means that if the AV decides to overtake an NPC while near
an intersection or on a crosswalk, the ‘overtake’ decision is consid-
ered improper. In this case, 𝑥 refers to perceived objects, such as
vehicles, bicycles, or pedestrians. It is important to note that if a
specification is satisfied, a vulnerability has been identified. The
detailed specifications can be found on our website [6].
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Causal Events Deduction. To identify the causes of accidents
from the simplified accident recordings, we design a tool called the
Causality Analysis Tool, or CAT for short. CAT analyzes frames la-
beled as safety-critical to determinewhether the planning trajectory
could intersect with other traffic participants in a way that might
cause an accident. If CAT identifies a potential accident scenario, it
analyzes the events leading up to that moment and identifies the
actions or behaviors that contributed to the scenario. It is worth
noting that even if the AV changes its planning in response to a po-
tential accident scenario, incorrect behavior at that moment could
waste valuable reaction time and increase the risk of an accident.

To achieve this, our tool analyzes ST graphs depicting the AV’s
planning states to discover potential causal events. Based on the
Frenet framemethod, the ST graph provides a visual way to describe
longitudinal behavioral and motion planning. Besides directly pre-
senting whether the trajectory plan is collision-free, the ST graph
also describes aspects of the AV’s driving decisions and speed plan-
ning. Specifically, in an ST graph, time is the horizontal axis, the
planned longitudinal trajectory distance is the vertical axis and
the planned longitudinal trajectory is a curve. Each point on the
curve represents a waypoint on the planned trajectory, and the
curve’s gradient represents the speed. The motion of other traffic
participants can be drawn as rectangles that block certain parts
of the AV’s longitudinal path during a specific time interval. An
ideal speed curve intersects with none of these rectangles so that
there is no collision between the AV and NPCs. The positional rela-
tionship between the speed curve and an obstacle block in the ST
graph presents the AV’s behavioral planning result for the related
traffic participant. If the obstacle block of a traffic participant is
above/below the AV’s speed curve, the driving decision by the AV
is to yield/overtake, as shown in Figure 4. Therefore, for achieving
collision-free trajectory planning, it is imperative that the vehicle
accurately perceives all surrounding NPCs and predicts their future
trajectories with high precision. This ensures that there is no over-
lap between the AV and NPCs at each time step. Fundamentally, this
planning process equates to solving a constraint satisfaction prob-
lem, where the constraints are defined by the drivable area. In an
ideal scenario, precise outputs from the perception and prediction
modules would enable the computation to guarantee a collision-free
trajectory.

Our tool performs a detailed comparison and analysis of the ST
graph from the AV perspective against the ground truth, frame by
frame. The idea is that for any given frame in the recording, CAT
can reconstruct accurate subsequent trajectories of NPCs using
data from the future segments of the recording. This reconstructed
trajectory is then treated as the ground truth for assessing the ef-
fectiveness of the prediction module. Additionally, we examine the
planning module of the tool to verify whether it accurately calcu-
lates the necessary constraints for ensuring collision-free trajectory
planning for the respective frame.

The analysis process of CAT is shown in Figure 5. CAT firstly
checks the priority prediction of the NPC involved in the accident.
If the NPC’s priority prediction is ‘ignore’, it means that the cause
of the collision is wrong priority prediction. This is because AVs
do not consider an ignored NPC in the subsequent planning. This
omission manifests as a lack of black blocks representing calculated
constraints in the ST graph for the NPC, with only the blue blocks

indicating the ground truth constraints present. If the AV’s speed
planning curve does not intersect with the obstacle blocks by the
AV but intersects with the obstacle block in the ground truth, it
means that the cause of the collision is the AV’s misunderstanding
of the NPC’s future action. This situation is characterized by a
significant deviation in the ST graph for the NPC, where there is
a clear discrepancy between the constraints calculated by the AV
and those of the ground truth.

If the prediction of the NPC made no error, CAT checks the AV’s
behavioral planning and then the motion planning. In the poten-
tial safety-critical frame identification step, ACAV filters potential
improper driving decisions made by the AV. When CAT checks the
behavioral planning result, if the speed curve intersects with any ob-
stacle blocks near the risky driving decision, it means that improper
behavioral planning is to blame for the accident. For example, the
speed curve in the ST graph improperly extends beyond an NPC’s
block to overtake it. However, in this particular scenario, the AV is
unable to find a viable trajectory to avoid a collision with another
NPC. If the speed curve still intersects with other obstacle blocks
based on reasonable behavioral planning, it means that improper
motion planning caused by risky speed limits is to blame for the
accident. In this case, the speed curve in the ST graph demonstrates
an insufficient margin relative to the NPC’s block, indicating a lack
of adequate space to safely avoid the NPC. If CAT finds that the
AV’s planning is collision-free, it compares the actual trajectory
with the planned trajectory. If there is a deviation between the two
trajectories, we can infer that the AV failed to execute the planning
due to being out of control (e.g., due to skidding).
Generalizability. While we have presented ACAV in the context
of Apollo, the overall approach can be generalized to other ADSs,
given that it operates solely on accident recordings and does not
require knowledge of the specific internal designs of the systems
involved in generating the recordings. The primary assumption
for employing our framework is thus the ability to generate/obtain
similar recordings. Fortunately, modern ADSs typically have multi-
module architectures similar to that of Apollo.

We illustrate the generalizability of ACAV by applying it to record-
ings obtained from the Autoware.universe ADS [3] and the Carla
simulator [23]. We systematically examined the semantic structure
of message fields required by ACAV from various modules, includ-
ing localization, perception, and planning modules. In the case of
localization messages, there were similarities between the fields in
Autoware.universe and Apollo. Meanwhile, the perception module
in Autoware.universe contained tasks related to detecting nearby
obstacles and predicting their future trajectories, a functionality
akin to the combined roles of perception and prediction modules in
Apollo. Nonetheless, some disparities arose in the message struc-
ture. Notably, Autoware.universe lacked an obstacle priority field
within perception messages and a behavioral planning field within
planning messages. To mitigate these differences in message format,
we populated the missing fields with default values. As a result,
ACAV demonstrated the capability to identify causal events such
as wrong trajectory prediction, incorrect speed planning, and in-
stances of vehicles going out of control. However, it was unable
to identify causal events related to incorrect priority prediction
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Figure 4: Speed planning based on an ST graph

Figure 5: CAT for causality analysis

and erroneous behavioral planning due to the absence of corre-
sponding fields in the message structure (an issue that requires an
engineering effort in Autoware.universe to solve).

4 EVALUATION
4.1 Research Questions & Evaluation Metrics
To evaluate the performance of our framework, we conducted ex-
periments to answer the following research questions:
• RQ1: Which combination of weights for feature vector cate-
gories and which threshold in the “segmenting and pruning”
phase are the most effective?
• RQ2: Does ACAV effectively simplify accident recording com-
pared to other approaches?
• RQ3: How many different causal events can the causality
analysis of ACAV automatically identify?
• RQ4: To what extent can ACAV accurately identify causal
events?

For RQ1 and RQ2, we evaluated the performance of the sim-
plification methods used in the first stage based on two metrics:
the ‘ratio of reduced frames’ and the ‘recall of critical frames’. The
ratio of reduced frames refers to the length of the removed driv-
ing recording over the length of the driving recording before the
accident, whereas the recall of critical frames is the number of
critical frames in the reduced recording segment over that in the
entire recording. Since the subsequent causality analysis relies on
these critical frames, we aimed to preserve them as much as possi-
ble. Therefore, we initially focused on the recall metric of different
methods and then considered their ratio of reduced frames. For RQ3,

Figure 6: Ratio (higher is better) and recall (higher is better)
of the pruning method under different thresholds

Table 5: Ratio (higher is better) and recall (higher is better) of
different combinations of voting methods

Weight Ratio
(map:perc:pln) 1:1:0 1:0:1 0:1:1 1:1:1 2:1:1 1:2:1 1:1:2

Ratio 74.64% 96.43% 74.64% 50.03% 60.26% 74.64% 62.23%
Recall 79.62% 11:06% 79.62% 93.01% 89.19% 79.62% 94.41%

we assessed the effectiveness of the ACAV by analyzing the number
of different causal events it could automatically identify based on
the simplification of accident recordings. For RQ4, we evaluated the
accuracy of our framework in identifying causal events resulting
from versions of Apollo injected with specific faults.

4.2 Experiments and Discussion
4.2.1 RQ1. Different segmenting methods lead to different seg-
mentations of the recording, which can affect the efficacy of test
reduction and the final analysis. This is due to the varying contri-
butions of features in depicting a driving scenario. Additionally,
using the same contribution for all features can result in many short
clips and a lower reduction ratio of original recordings. To design a
coarse-grained test reduction method, we evaluated the effective-
ness of various combinations of weights assigned to categories of
feature vectors and the threshold for determining accident record-
ing segments in RQ1. This method aims to identify and remove
non-accident segments to reduce the overall size of the recording
for analysis.

We first evaluated the performance of different settings of the
voting method for frame segmenting when the threshold value
was set as 0.8 for pruning and present the results in Table 5. We
focused on the recall of critical frames, as this factor can signifi-
cantly impact the causality analysis conducted by our a priori frame
checker and CAT. The results indicated that the voting method with
a weight ratio of 𝑚𝑎𝑝 : 𝑝𝑒𝑟𝑐 : 𝑝𝑙𝑛 = 1 : 1 : 2 (i.e., the method
adopted by our framework) achieved the best total recall rate of
94.41% across all frame segmenting methods. This method also
had a reduced frame ratio of 62.23%, signifying its effectiveness in
removing non-accident recording segments from the analysis. It is
also worth noting that the voting method with a weight ratio of
𝑚𝑎𝑝 : 𝑝𝑒𝑟𝑐 : 𝑝𝑙𝑛 = 1 : 1 : 1 achieved a similar recall rate (93.01%)
compared to our method (94.41%) while having the lowest ratio of
reduced frames among all the weight combinations. However, we
observed that the segments generated by this weight combination
were fewer in number and larger in length than those created by
our segmenting method, leading to fewer segments being discarded
in the recording pruning stage. As a result, insufficient recording
pruning allowed this method to maintain a promising recall, but
it does not necessarily imply that this is an effective segmenting
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Table 6: Ratio (higher is better) and recall (higher is better) of
different recording segmenting methods

ACAV STRaP Length: 4s Length: 8s Length: 12s Length: 16s
Ratio 62.23% 60.57% 76.74% 54.40% 32.64% 16.29%
Recall 94.41% 30.81% 72.26% 82.92% 86.85% 91.35%

method. The optimal balance between recall and pruning efficiency
is crucial for an effective segmenting method, and our method with
the weight ratio 𝑚𝑎𝑝 : 𝑝𝑒𝑟𝑐 : 𝑝𝑙𝑛 = 1 : 1 : 2 has demonstrated
better overall performance in capturing critical frames and pruning
irrelevant ones.

In order to determine the optimal threshold for our segment
pruning method, we conducted a series of experiments, adjusting
the threshold for identifying accident-related segments in incre-
ments of 0.2, starting from 0.2. We focused on the same two metrics:
recall and ratio. The results presented in Figure 6 reveal that as
the threshold value increases, recall progressively improves. When
the threshold value exceeds 0.4, recall consistently remains above
80%. Simultaneously, the ratio gradually decreases as the threshold
value rises. From a threshold of 0.2 to 0.8, the ratio experiences min-
imal change and maintains a level above 60%. However, when the
threshold increases from 0.8 to 1, the ratio experiences a substantial
decrease compared to previous levels. Based on these findings, we
concluded that a threshold of 0.8 is optimal, as it strikes a balance
between high record reduction performance and the retention of a
sufficient number of safety-critical frames.

4.2.2 RQ2. For RQ2, our objective is to compare our accident
recording simplification method with a variety of alternative fixed-
length recording pruning methods and the STRaP framework [21],
an AV recording simplification method. We set the lengths at 4,
8, 12, and 16 seconds before the accident, considering that the re-
maining segment length of our approach is approximately between
4s and 16s. The results of our experiment are displayed in Table 6.
The rows represent the evaluation metrics of different segment-
ing and pruning methods, while the columns indicate the various
accident categories included in the experiments. A comparison
with fixed-length segmenting methods reveals that it is not feasible
to establish a fixed remaining length that effectively balances a
substantial reduction ratio with a high critical frame recall. Upon
further examination of the accident-related segment lengths, we
believe that the primary reason for this outcome is the variability in
the duration of interaction between the AV and the NPC involved
in different accidents. This observation also highlights the utility
and generalizability of our approach, which can adapt to a wide
range of cases.

As our segmenting and pruning method shares similar goals
with the concept of test reduction and prioritization, we further
compared our accident recording simplificationmethodwith STRaP,
which scales redundant segments with similar contents down to a
given length to reduce the length of a recording. As shown in RQ1,
ACAV’s ratio of reduced frames is 62.23% on average. Therefore,
we restricted the retained recording length in STRaP as 40% of
the number of frames in the original segment to ensure a similar
reduced frame ratio, i.e., a ratio rate of about 60%. In our experiment,
STRaP achieved a total reduced frame ratio rate of 39.43% and a

Table 7: The number of causal events over different accident
types

Wrong
Priority

Prediction

Wrong
Trajectory
Prediction

Wrong
Behavioral
Planning

Wrong
Motion
Planning

Vehicle
Out-of-control

Total 26 51 17 67 103
Intersection 0 0 6 27 39
Merging 20 27 4 23 30
Tailgating 6 24 7 17 34

recall rate of 30.81%. The reason is that the STRaP framework, while
effective in its intended purpose, modifies the content of the original
recordings in such a way that distorts the temporal relationships
between events and their true durations. This alteration of the
original recordings makes STRaP unsuitable for causality analysis.

4.2.3 RQ3. In RQ3, our objective is to determine ACAV’s perfor-
mance on the accident recordings collected for the original ADS. To
achieve this, we conducted a comprehensive evaluation by applying
our framework to a dataset comprising 110 accident recordings,
all generated by an AV testing engine [63]. This dataset encom-
passed a variety of accident scenarios, including 43 intersection
accidents, 31 merging accidents, and 36 rear-end accidents. ACAV
successfully identified the causal events for 103 of these accident
recordings. However, our study found that ACAV was unable to de-
tect any significant causal events in 7 accident recordings. Upon
further examination, we discovered that these accidents merely in-
volved minor scratches between the AV and the NPC, without any
severe impacts taking place. This issue can be attributed to the lim-
itations of computational precision, which can be perceived as an
engineering challenge arising from the complexities of accurately
processing distances.

For the remaining 103 accidents, we conducted a manual veri-
fication process. This entailed revisiting all the causality analysis
reports by replaying the accident recordings and validating the
causal events identified by ACAV. In particular, we conducted a
systematic examination of all causal events identified by our frame-
work and present the specific numbers for each accident type in
Table 7. These results indicate that ACAV can effectively identify
multiple causal events in various accidents, utilizing each causal
event defined by CAT. Through ACAV, the events of wrong trajec-
tory prediction were primarily found in merging and rear-end type
accidents, while wrong speed planning events occurred more fre-
quently in intersection and merging accidents. It is important to
note that all the accidents in our dataset occurred in rainy or snowy
weather conditions, which explains the “vehicle out-of-control”
event appearing in all 103 accidents.

4.2.4 RQ4. In RQ4, we sought to assess the accuracy of our frame-
work in identifying the causes of accidents. To achieve this, we
injected eight distinct fault types, as detailed in Table 8, into the
ADS. Specifically, F1 can cause an accident due to wrong priority
prediction causal events, while F2 causes accidents based on wrong
trajectory prediction. Conversely, F3 through F7 are designed to
cause accidents due to improper behavioral planning. Finally, F8
is identified as the trigger for a causal event related to improper
motion planning. For each fault type, we ran the testing engine [63]
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Table 8: The eight types of faults injected into the customized ADS

Fault Type Location Description
F1 AssignIgnoreLevel()@obstacle_prioritizer.cc Assign ‘ignore’ priority to all the detected NPCs by default.
F2 PredictObstacle()@predictor_manager.cc Assign improper trajectory prediction models to NPCs to get erroneous trajectory prediction.
F3 MakeStaticObstacleDecision()@path_decider.cc Make ‘ignore’ decisions to all the static NPCs near the AV’s planned trajectory.
F4 MakeObjectDecision()@speed_decider.cc Make ‘follow’ decisions to any NPCs in front of the AV which tend to stop, instead of ‘stop’ decisions or changing lanes.
F5 MakeObjectDecision()@speed_decider.cc Make ‘ignore’ decisions to an NPC ahead of the AV, if the AV is not following or keeping distance from it.
F6 MakeObjectDecision()@speed_decider.cc Make ‘yield’ decisions to a high-speed NPC accelerating ahead of the AV, which leads to AV’s low speed in a fast lane.
F7 MakeObjectDecision()@speed_decider.cc Make ‘overtake’ decisions to any NPC if it is near the AV.
F8 GetSpeedLimits()@speed_limit_decider.cc Keep a high speed even being close to NPCs.

Table 9: Precision (higher is better), Recall (higher is better),
and Accuracy (higher is better) of causal events over accidents
with different fault injections

Location Prediction Module Planning Module
Fault Types F1 F2 Total F3 F4 F5 F6 F7 F8 Total
Numbers 155 126 281 132 146 202 166 145 134 925

Precision (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall (%) 100.00 90.00 95.97 87.61 73.98 89.70 86.72 77.19 77.19 82.56

Accuracy (%) 100.00 92.06 96.44 89.39 78.08 91.58 89.76 82.07 80.60 85.73

for approximately one day and recorded the resulting accidents. It is
imperative to highlight our efforts to ensure the complexity of each
recorded test case. We accomplished this by implementing varying
extended routes and incorporating multiple NPCs of diverse types.
Furthermore, we standardized the duration of each recording file
to 120 seconds. In total, we amassed a dataset comprising 1206
accident recordings.

Subsequently, we applied our framework to analyze these acci-
dent recordings, documenting the accident causal events and their
respective time frames. In this experiment, if a causal event’s dura-
tion significantly surpassed those of other causal events, we deemed
it to be the ‘main’ cause of the given accident. For example, in the
case of fault F2, if the injected fault takes effect, it should persist
for a sufficient duration to accumulate a noticeable trajectory pre-
diction error, which is crucial for causing accidents. Consequently,
the associated causal event, namely, ‘wrong trajectory prediction’,
would be identified in the recording files as the main cause of this
fault. If our framework correctly identifies the functions in line
with the injected faults, we conclude that our framework accurately
determines the cause of the accidents.

As shown in Table 9, ACAV performs well, accurately identifying
causal events in 1064 out of the accident recordings, with a pre-
cision of 100.00% for both the prediction and planning modules.
This indicates that, for a specific type of fault, our framework can
both precisely identify the causal events within the recording and
distinguish recordings that do not include these causal events. Fur-
thermore, this is complemented by a recall rate of 95.97% and an
accuracy of 96.44% in the prediction module, along with a recall
rate of 82.56% and an accuracy of 85.73% in the planning module.

Nevertheless, our investigation uncovered a limitation, as ACAV
failed to detect the causal events in 142 accident recordings. Upon
a more in-depth examination, we discovered that when faults are
injected into the planning module, two or three closely interre-
lated causal events often occur simultaneously. For instance, in 15
accidents linked to fault F7, an additional causal event surfaced:
the vehicle going out of control. This event was attributable to the
elevated speed requirement of the ‘overtake’ decision, particularly

evident during inclement weather conditions like rain or snow.
We observed that ACAV successfully identified interrelated causal
events in 105 out of the 142 accidents.

4.2.5 Threats to Validity. We acknowledge certain limitations and
threats to the validity of our evaluation. While our approach has
been implemented for two distinct platforms—Apollo, simulated
with the SVL Simulator, and Autoware.universe, simulated with
Carla—our evaluation is exclusively focused on the Apollo ADS. The
reason is that there is currently no suitable fuzzing engine imple-
mented for Autoware.universe. This absence presents a challenge
in acquiring sufficient accident recordings for a comprehensive
evaluation of our approach on the platform. Second, during testing,
we observed that the AV primarily considered NPCs in front of it
when planning driving behavior. When an NPC hits the AV from
behind, ACAV may not yield effective analysis results. This issue
could be addressed by incorporating more intelligent NPC behavior
configurations in the simulator, which would better emulate inter-
actions between real-world vehicles. Furthermore, it is generally
accepted that the rear vehicle should bear more responsibility in a
rear-end accident, a principle that is also practiced in many juris-
dictions [5]. Third, it is imperative to acknowledge that the faults
injected in RQ4 do not reflect the real-world faults in the ADSs.
However, the resulting accidents from these injected faults are sim-
ilar to those caused by real-world faults in ADSs, lending credence
to our framework’s ability to accurately identify causal factors of
accidents. Moreover, the inherent complexity of ADSs, attributed
to their reliance on logic-based code, external dependency libraries,
and machine learning-based models across various modules, con-
tributes to a significant challenge for repairing. As reported in a
study [30], more than half of the AV faults originate from incorrect
algorithmic implementations or configurations, often involving ex-
tensive code segments exceeding 20 lines. Consequently, while our
framework can interpret accident recordings and pinpoint poten-
tial causes, it should not be considered a panacea for repairing the
underlying bugs in ADS systems.

5 RELATEDWORK
System-level testing for AVs is designed to evaluate the perfor-
mance of the entire ADS, as opposed to module-level testing, which
focuses on individual modules or specific functionalities. This com-
prehensive evaluation is achieved through the use of scenario-based
test cases and test oracles. Current research in system-level testing
primarily focuses on generating corner cases and error-prone driv-
ing scenarios. There are two main categories of scenario sources:
real-world data, and testing frameworks.
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One category of work generates scenarios derived from scenarios
observed in the real world, emphasizing the similarity between the
generated scenarios and real-world ones [43, 44]. Zhang et al. [58]
proposed a method based on 3D scene reconstruction, which uses
images collected by the in-vehicle camera to recreate scenarios as
test cases. Gambi et al. [25] proposed AC3R, which extracts informa-
tion from collision reports and constructs new test scenarios using
simulation methods. DEEPCRASHTEST [12] recreates accident
scenarios based on accident videos. Fremont et al. [29] combined
formal verification with clustering algorithms to select usable test
scenarios. There is also an approach [48] that evaluates the perfor-
mance of the ADSs by comparing them with that of human drivers
according to features extracted from real-world scenarios.

Another category ofwork generates scenarios by using a (domain-
specific) testing framework. Twowidely-adoptedmethodologies are
search-based or sampling-based methods [7, 8, 13, 24, 32, 40, 47, 64].
Search-based methods, or fuzzing, typically search the parameter
space for specific parameter values to achieve a certain testing goal.
To guarantee the efficiency of the heuristic search method adopted,
e.g., genetic algorithms, a well-defined fitness function is required.
Althoff et al. [9] defined a calculating metric, the drivable area, to
quantify the search of solution space, and combined reachability
analysis with optimization techniques to obtain test scenarios. Li et
al. [38] proposed AVFuzzer, which uses safety potential, the distance
between the ego vehicle and other traffic participants, as the fitness
function for a genetic algorithm-based fuzzer to find scenarios that
could lead to collisions. Combining program analysis techniques
and evolutionary algorithm-based fuzzing, PlanFuzz [54] defines
behavioral planning vulnerability distance as the guidance for the
generation of test scenarios that would cause the autonomous ve-
hicle to stop under safe conditions. Sun et al. [52] defined a metric
for quantifying the degree to which autonomous vehicles violate
traffic rules in a driving scenario, guiding their fuzzer to generate
test cases that violate traffic regulations. Sampling-based methods
sample from a naturalistic scenario distribution to generate test
cases. A series of works [33, 56, 61, 62] has studied sampling in dif-
ferent driving scenarios based on importance sampling [53]. Batsch
et al. [15] built a Gaussian process classification model to estimate
the safety of a scenario probabilistically, with the training data
sampled from simulation-generated traffic congestion scenarios.
NADE [28] collects driving scenarios from real-world data and
samples to generate realistic and safety-critical scenarios.

The aforementioned works primarily concentrate on evaluating
the performance of ADSs comprehensively and identifying new
vulnerabilities. However, their focus lies in determining whether
the ADSs fail to meet the test oracles, rather than understanding
the underlying reasons for these failures. Our method is driven by
the goal of analyzing the actual cause of safety violations, such as
collisions, by concentrating on the testing process itself.

In recent years, causality has become a widely-adopted method-
ology to analyze complex systems. Forney et al. [35] proposed an
interactive platform for fault diagnosis and forensic investigation in
fields such as airplane accidents. Bareinboim et al. [10] proposed a
causal inference-based method to solve data fusion problems in the
context of big data. Biebl et al. [14] presented a causal model to pre-
dict accident risks in an intersection for drivers with impairments.
In addition toworks focusing onAI [11, 18, 19, 59], someworks have

applied causality to the security analysis of CPSs [34, 36, 37, 41, 42].
Zhang et al. [60] monitored, inspected, and located anomalies in
industrial control systems using a causal model based on maximum
information coefficient and transfer entropy. Poskitt et al. [46]
proposed a causality-guided fuzzing method that identifies and
generalizes the causality of events in testing to find new test cases
with different causal relationships. Our method is designed to em-
ploy causality analysis on autonomous driving accident records to
facilitate deeper fault analysis and uncover the underlying causes
of accidents. By examining the causal factors that contribute to
accidents, we can better understand the limitations and vulnerabili-
ties of autonomous driving systems. This, in turn, allows engineers
to make more targeted improvements, enhance safety, and reduce
the likelihood of similar accidents occurring in the future.

6 CONCLUSION
We presented ACAV, an automated framework for determining the
causal events in AV accidents. We successfully implemented it in
both Apollo and Autoware.universe and evaluated our framework
using 110 accident driving recordings from the Baidu Apollo ADS,
successfully identifying causal events in 103 of them. After ana-
lyzing 1206 accident recordings collected from ADSs injected with
specific faults, we further showed that it identifies causal events
correctly.

In future work, we are interested in developing automatic pro-
gram repair techniques for ADSs, leveraging the results of causality
analyses from accidents. By incorporating these advancements, we
hope to create a comprehensive framework that can contribute
significantly to the safety and reliability of AVs in real-world sce-
narios.
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