
1

Specification-based Autonomous Driving
System Testing

Yuan Zhou, Yang Sun, Yun Tang, Yuqi Chen, Jun Sun, Christopher M. Poskitt,
Yang Liu, and Zijiang Yang

Abstract—Autonomous vehicle (AV) systems must be comprehensively tested and evaluated before they can be deployed.
High-fidelity simulators such as CARLA or LGSVL allow this to be done safely in very realistic and highly customizable environments.
Existing testing approaches, however, fail to test simulated AVs systematically, as they focus on specific scenarios and oracles (e.g.,
lane following scenario with the “no collision” requirement) and lack any coverage criteria measures. In this paper, we propose AVUnit,
a framework for systematically testing AV systems against customizable correctness specifications. Designed modularly to support
different simulators, AVUnit consists of two new languages for specifying dynamic properties of scenes (e.g. changing pedestrian
behaviour after waypoints) and fine-grained assertions about the AV’s journey. AVUnit further supports multiple fuzzing algorithms that
automatically search for test cases that violate these assertions, using robustness and coverage measures as fitness metrics. We
evaluated the implementation of AVUnit for the LGSVL+Apollo simulation environment, finding 19 kinds of issues in Apollo, which
indicate that the open-source Apollo does not perform well in complex intersections and lane-changing related scenarios.

Index Terms—Autonomous Driving System, Testing, Specification Languages, Fuzzing, Coverage Criteria.

F

1 INTRODUCTION

Autonomous vehicles (AVs) are set to play an essential
role in relieving traffic congestion and reducing accidents
in intelligent transportation systems. AVs are controlled
by autonomous driving systems (ADSs), which take over
various driving tasks from human drivers by interpreting
and acting on sensory information (e.g. lidar data). Before
AVs can be fully deployed on public roads, however, it is
imperative that their ADSs are comprehensively tested to
ensure they will always behave correctly and safely, even
in rare scenarios where pedestrians and human-controlled
vehicles behave unpredictably.

The state of the art in AV testing can be broadly divided
into two categories: real-world testing and simulator-based test-
ing. Extensive and rigorous real-world road testing for AVs
is necessary and often used as a measure of the technology’s
progress, e.g. the number of kilometres covered without
human intervention. However, it is also costly, and most
importantly, insufficient to cover all the situations that AVs
must be able to safely react to (e.g. accident scenarios).
This motivates the need for simulator-based testing, where
developers and safety engineers can systematically assess
ADSs against a broader range of scenarios that may occur on

• Y. Zhou, Y. Tang, and Y. Liu are with the School of Computer Science and
Engineering, Nanyang Technology University, Singapore, 639798.
E-mail: y.zhou@ntu.eud.sg, yun005@e.ntu.edu.sg, yangliu@ntu.edu.sg

• Y. Sun, J. Sun, C.M. Poskitt are with the School of Computing and
Information Systems, Singapore Management University, Singapore,
178902.
E-mail: yangsun.2020@phdcs.smu.edu.sg, junsun@smu.edu.sg,
cposkitt@smu.edu.sg.

• Y Chen is with ShanghaiTech University, Shanghai, 201210, China.
E-mail: chenyq@shanghaitech.edu.cn

• Z. Yang is with Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China,
and also with GuardStrike Inc., Xi’an, Shaanxi, 710074, China.
E-mail: zijiang@xjtu.edu.cn.

the road. These scenarios can be designed at different levels,
from the most abstract to the least: functional, in which
roads and traffic agents, including pedestrians, non-player
character (NPC) vehicles (vehicles not controlled by ADSs)
and static obstacles are described using a linguistic notation;
logical, in which parameters and their ranges (e.g. positions)
are specified; and concrete, in which concrete values for
every parameter are given [1]. Test cases are then executable
concrete scenarios together with oracles, i.e. ‘pass/fail’ crite-
ria, that the behaviour of the ADSs must satisfy [2].

For simulation-based testing, researchers and engineers
rely on high-fidelity simulators such as LGSVL [3] and
CARLA [4], which can simulate not only sensors and vehicle
dynamics but also controlled traffic flows. While equipped
with APIs for configuring scenarios, these simulators differ
significantly and are not specifically designed to support
systematic testing and analysis. This has motivated the de-
velopment of tool-independent domain-specific languages
(DSLs) that can be used to specify AV scenarios, e.g. [5]–
[11]. For example, OpenScenario [6] provides a standard
for AV scenarios and an XML format to model scenarios,
where the motion of an agent is described by actions and
triggers; the triggers are related to other agents and active
actions. GeoScenario [7] is designed based on OpenScenario,
and the behaviour of a dynamic agent is given by its
position and speed profiles, together with reactive triggers.
Scenic [8] was first designed for describing different scenes
and later extended to dynamic scenarios using simulator-
specified actions, which may rely on other traffic partici-
pants on the road. Most of the existing scenario description
languages primarily focus on depicting complex scenarios
involving interactions among different traffic participants,
rather than automatically testing ADSs. For example, while
some companies that work on ADSs (e.g., Desay, Alibaba,
and NIO) could create scenarios using OpenScenario, they

2

often struggle to generate new scenarios automatically due
to uncertainty about the appropriate elements that can be
altered. Consequently, there is a requirement for a platform
that integrates with a scenario description language to facil-
itate automatic testing of ADSs.

An additional problem is that the aforementioned lan-
guages do not support customizing correctness specifica-
tions, i.e. the conditions that ADSs must satisfy when
navigating a scenario, and automatic test case generation.
Various critical scenario generation methods have been pro-
posed based on real-world traffic data/reports [12]–[20] or
ADS system models [21]–[25]. In terms of correctness, all of
these methods focus on fixed oracles, e.g. “no collisions”.
However, users, especially ADS developers, may want to
test various correctness conditions based on their own re-
quirements, such as the local driving laws (which might
vary from country-to-country), and even conditions related
to passenger comfort (e.g. by avoiding sudden braking).
While there are some specification languages based on sig-
nal temporal logic (STL) [26], [27] for describing conditions
with respect to certain ADS modules (e.g. perception), to the
best of our knowledge, no tool-independent language cur-
rently exists for individually expressing various correctness
specifications that ADSs should satisfy.

To address these requirements and support automatic
ADS testing, we present AVUnit, a comprehensive frame-
work for systematical ADS testing. AVUnit features rich new
DSLs—SCENEST and AVSpec—for respectively specifying
dynamic scenarios and AV correctness conditions, as well
as an approach that searches for specification-violating test
cases automatically. First, SCENEST is an agent-oriented lan-
guage and specifies a scenario in terms of different elements,
such as time, weather, and traffic agents, as well as their
concrete behaviours in terms of waypoints. It is specifically
designed for testing purposes and models each agent inde-
pendently, which can simplify the initialization of scenarios
by following the given template. Second, AVSpec uses STL
formulas to describe different correctness specifications. The
expression of each specification relies only on SCENEST,
rather than the specific outputs of an ADS, ensuring that
AVSpec is ADS-independent and can be applied to many
different systems. Finally, we propose two feedback-guided
fuzzing algorithms: fuzzing for failures and fuzzing for
coverage. In fuzzing for failures, a genetic algorithm (GA)
is applied to guide the generation of scenarios that violate
a given specification. In fuzzing for coverage, we propose
specification-based coverage to evaluate testing sufficiency.
Compared with the state-of-the-art DSLs, the main unique
features of AVUnit are that (1) it proposes an agent-oriented
language for scenario description and a general way to
customize specifications, and (2) it is equipped with fuzzing
algorithms to generate critical scenarios automatically.

The implementation of AVUnit consists of (1) a parser,
which uses antlr4 to extract the elements describing a sce-
nario in the SCENEST script and the corresponding specifi-
cations; (2) a simulator adapter, which spawn the scenario
to a simulator; (3) a fuzzing engine, which implements the
feedback-guided fuzzing algorithms; and (4) a middleware,
which collects execution data from the ADS. Note that
the simulator adapter and the middleware components
are customized based on the specific simulator and ADS

used, respectively. However, developing the adapter and
middleware is a distinct process, and users of AVUnit
can concentrate only on the testing itself. We evaluate the
implementation on the LGSVL simulator [3] and Baidu
Apollo ADS [28]. We conduct a comprehensive experiment
on Apollo and discover 19 issues, which can be found at
https://avunit2021.github.io/.

The main contributions of this paper are as follows.
• We design an agent-oriented DSL for describing ADS

testing scenarios. It models the agents in a scenario in a
decoupled way following a certain template.

• We design an ADS-independent language to describe fine-
grained correctness specifications for AVs.

• We propose two feedback-guided fuzzing algorithms to
test ADSs based on the described scenarios and specifi-
cations. The first is designed to generate scenarios that
violate the defined specifications, and the second one is
designed to maximize a test coverage criterion that is de-
fined based on different ways of violating a specification.

• We implemented our framework for LGSVL+Apollo, find-
ing that Apollo does not perform well in complex inter-
sections and lane changing (including overtaking) and is
vulnerable to attacks.

2 AVUNIT: BACKGROUND AND OVERVIEW

Background. AVs are complex systems consisting of various
electronic control units (ECUs) and sensors. As the brain of
an AV, the ADS reads the data from sensors and generates
commands to different ECUs. ADSs are complex software
systems containing deterministic components (e.g., conven-
tional motion planning and control algorithms) and non-
deterministic components (e.g., deep learning models). An
ADS usually consists of the following modules: localization,
perception, motion planning, and control. The localization
module takes the data from related sensors (e.g., GPS and
IMU) as input and locates the position of the AV in the map.
The perception module is used to process the data from
cameras, LiDAR, and Radar and recognize the surrounding
objects (e.g., lane boundaries, traffic signs, traffic lights,
other vehicles, and pedestrians) via some deep learning
models (e.g., RNNs and CNNs). The motion planning mod-
ule is to generate collision-free trajectory. It contains global
and local motion planning. The global motion planning
generates a path offline from the initial position to the
target position based on the map, without considering the
real-time environment. The local motion planning aims to
generate a local collision-free trajectory based on the offline
path and the real-time traffic conditions. Finally, the control
module generates proper control commands (i.e., steering,
throttle, brake) to the chassis.

ADSs play an essential role to guarantee the correctness
of AVs’ motion. However, ADS testing is still challenging
since (1) the structure of an ADS is complex, containing not
only traditional software components but also deep learning
components, (2) the development of ADSs rely on vari-
ous aspects, such as software engineering, deep learning,
robotics, and control theory, (3) the number of parameters
forming a test case is large and non-deterministic due to
the open environments, and (4) a test case should specify
not only an initial scene but also a detailed scenario, which

https://avunit2021.github.io/

3

!"#$#!% &'!()*

!"#$%&'() *+!

+,-./,0+1/2/.,-

3144.-56#-5.-)

,&"%$)-./-0()'

1)&2-

!13.*44-)'"(54

6-7.1-4'.

8&4-4

95
"'"&

%.1-
4'.8

&
4-

950$'.1-:'
!0-2";"2&'"(54

Fig. 1: The architecture of AVUnit.

!"#$%&'
!"#$%&(

!"#$%&'$%&(

$%&)

$%&*

$%&+

%,-

!"#$%&'

!"#$%&(

!"#$%&)

!"#$%)(*

!"#$%)+'

!"#$%)+(!"#$%,-

!"#$%,* !"#$%)+)

./$&012$ 32/$-456

!"#$%))

!"#$%).

&5277849:

!"#$%)++ !"#$%&.!"#$%,/

Fig. 2: The initial scene generated by our test script in Apollo
Dreamview. The blue lines are the paths for npc1–npc4.

consists of a sequence of scenes and their transitions; writing
such a scenario sometime is overwhelming since different
agents have different behaviours.
AVUnit. Hence, to facilitate ADS testing, we propose AVU-
nit, a script language specifically designed for ADS testing,
which can describe not only various scenarios but also
different correctness properties. The architecture is shown
in Fig. 1. It has three main components, i.e., SCENEST,
a script for describing scenes and scenarios (Section 3),
AVSpec, an assertion language for specifying correctness
(Section 4), and a set of annotations for instructing the
fuzzing algorithms (Section 5). In detail, SCENEST is an
agent-oriented language to model a scenario for testing. It
describes different aspects in a test case, such as the map,
the weather conditions, the motion tasks for the ego vehicle,
the trajectories for pedestrians and NPC vehicles. AVSpec is
an STL-based language that users can customize different
specifications in the form of assertions. AVUnit is designed
to evaluate ADSs utilised in L4 and L5 autonomous vehicles.
However, it can also be applied to test ADASs (Advanced
Driver Assistance Systems) utilised in L2 and L3 vehicles,
as long as no human control or actions are required during
the execution of the ADAS under test. Moreover, AVUnit
can be used not only by developers and testers of ADSs
but also any interested stakeholders with little knowledge
of autonomous driving (e.g., junior researchers).
Motivating Example. Fig. 2 shows an initial scene of a
scenario that is generated based on the SCENEST script
shown in Listing 1, i.e., the input of a test case. In this
example, there are five NPC vehicles and one pedestrian.
To describe the concrete scenario, we need to describe the
motion task of the ‘ego vehicle’ (the vehicle under test),
the motion behaviour of npc1–npc5 and the pedestrian ped,
which are given as follows.

1 map_name = "san_francisco";
2

3 //Ego vehicle
4 car_model = "Lincoln MKZ 2017";
5 vehicle_type = (car_model);
6 ego_init_position = ENU (553078.1, 4182687.8);
7 ego_init_state = (ego_init_position);
8 ego_target_position = "lane_40"->50;
9 ego_target_state = (ego_target_position);

10 ego_vehicle = AV(ego_init_state, ego_target_state,
vehicle_type);

11

12 //Describe vehicle motion by waypoints
13 npc1_model = "Sedan";
14 npc1_heading = 0 deg related to ego_vehicle;
15 npc1_init_position = IMU (30, 0);
16 npc1_init_state = (npc1_init_position, npc1_heading,

6.0);
17 npc1_wps = (("lane_759"->1, ,2), ("lane_77"->10, ,6)

);
18 npc1_destination = ("lane_77"->100);
19 npc1 = Vehicle(npc1_init_state, Waypoint(npc1_wps),

npc1_destination, (npc1_model));
20

21 // Describe vehicle motion by uniform motion
22 npc2_model = "Jeep";
23 npc2_init_position = ENU (ego_init_position - (50,

0));
24 npc2_init_state = (npc2_init_position, ,6.0);
25 npc2 = Vehicle(npc2_init_state, Uniform(

npc2_init_state), , (npc2_model));
26

27 // Describe vehicle motion by default uniform motion
28 npc3_model = "SchoolBus";
29 npc3_init_state = ("lane_38"->10.0, ,5.8);
30 npc3 =Vehicle(npc3_init_state, , , (npc3_model));
31

32 // Describe vehicle motion by initial and target
positions.

33 npc4_model = "BoxTruck";
34 npc4_heading = 180 deg related to EGO;
35 npc4_init_state = ("lane_42"->50.0, ,8.0);
36 npc4_destination = ("lane_78"->100);
37 npc4 =Vehicle(npc4_init_state, , npc4_destination, (

npc4_model));
38

39 // Describe a static vehicle
40 npc5_model = "Hatchback";
41 npc5_heading = -1/2 pi rad;
42 npc5_init_state = ("lane_36"->40, npc5_heading);
43 npc5 = Vehicle(npc5_init_state, , , (npc5_model));
44

45 //Describe a pedestrian
46 ped_model = "Presley";
47 ped_position = (553011, 4182689.7);
48 ped_init_state= (ped_position, , 1.0);
49 ped_state_list = (((553011,4182681.5), , 1.0));
50 ped_motion = Waypoint(ped_state_list);
51 ped_destination = ((553011, 4182673.18));
52 ped = Pedestrian(ped_init_state, ped_motion,

ped_destination, ped_model);
53

54 //Describe Environment
55 time = 12:00;
56 weather = {rain:0.5, fog: 0.1, wetness: heavy};
57 env = Environment(time, weather);
58

59 scenario0 = CreateScenario{load(map_name);
60 ego_vehicle;
61 {npc1, npc2, npc3, npc4, npc5};
62 {ped};
63 {}; // no static obstacles;
64 evnt;};

Listing 1: SCENEST script for the motivating example.

4

1 Trace trace = EXE(scenario0);
2 ego_vehicle_traj = trace[ego];
3 npc1_traj_truth = trace[truth][npc1];
4 npc1_traj = trace[perception][npc1];
5 diff_dis = diff(npc1_traj_truth, npc1_traj);
6 dis_dis = dis(ego_vehicle_traj, npc1_traj_truth);
7 assertion1 = G (dis_dis<=50 -> diff_dis<1);
8 trace |= assertion1;
9 assertion2 = G (dis_dis>=1.0);

10 trace |= assertion2;
11 vel_dis = spd(ego_vehicle_traj, npc1_traj_truth);
12 assertion3 = G (dis_dis<3 -> vel_dis<0);
13 trace |= assertion3;

Listing 2: Specification description using AVSpec.

• Ego vehicle: The task of the ego vehicle is to move
from the start point to the target location, which is on
Lane lane_40 and 50 meters away from the lane’s start
position.

• npc1: npc1 is 30 meters ahead to the ego vehicle with
the same orientation. It needs to turn right via Lane
lane_759 and reach the position which is 100 meters
away to the start point of Lane lane_77. The initial speed
is 6m/s, and the speeds on the junction lane and the
outgoing lane are 2m/s and 6m/s, respectively.

• npc2–npc4: We can describe the motion of npc2–npc4
similarly. It is in general not necessary to specify the full
trajectory of an agent. Rather, AVUnit will take the partial
trajectory and generate a complete trajectory automati-
cally.

• npc5: npc5 is placed crossing the Lane lane_36 at the
location that is 40 meters away from the stating point.

• ped: ped is required to go through the crosswalk with a
constant speed 1m/s.

• time and weather: The time of the day is 12:00, and the
weather is rainy, fogging and wetness, whose degrees are
0.5, 0.1, and heavy, respectively.

To evaluate the execution of such a scenario, we can
specify different assertions. For example, we may monitor
whether the ego vehicle can detect npc1 correctly within
its sensing range, whether it always keeps a distance of 1
meter to npc1, and whether the speed of the ego vehicle is
less than that of npc1 when their distance is less than a given
threshold (e.g., 3 meters). The AVSpec code for these asser-
tions is given in Listing 2. In AVUnit, the input is a text file
written in SCENEST and AVSpec. Users must specify the map
to be loaded and the motion task of the ego vehicle (i.e., the
statements load(map_name) and AV(ego_init_state,
ego_target_state)) while others are left as optional.

3 SCENEST: SPECIFYING DYNAMIC TESTING
SCENARIOS

In this section, we summarize the syntax and semantics
of SCENEST, our language for specifying dynamic testing
scenarios, using Backus-Naur form (BNF). First, the lan-
guage can be used to specify scenes, such as the environment
(e.g. weather, time of day) and states of agents (e.g. po-
sitions and orientations). Second—distinguishing it from
other languages—SCENEST can be used to specify scenarios,
including the motion of NPC vehicles and pedestrians.

3.1 Describing Scenes

Scenes can be thought of as snapshots of the world, in-
cluding the environment (e.g. time of day, weather) and the
states of all agents within it (e.g. NPC vehicles, pedestrians).
In the following, we highlight the most important features
of the language for describing AV scenes, namely: (1) the
positions of agents, (2) the ‘heading’ (or orientation) of
agents, (3) the states and types of agents, (4) the weather
and time of day. SCENEST can also specify several other
properties, e.g. size and color. A simplified BNF grammar
for these features is given in Figure 3.
Position. In SCENEST, the positions of different agents
in scenes are specified using one of two kinds of posi-
tional references: (1) coordinates, i.e. a 2D or 3D vector
expression; or (2) lane positions, a position relative to a
lane’s starting point. When specifying a coordinate position
(coordPosition in Figure 3), one of three different ‘frames’
can be chosen: (1) IMU: the ego vehicle coordinate system
(forward-left-up), in which the origin is the position of the
ego vehicle. (2) ENU: East-north-up, in which coordinates
are relative to the map origin. It is the default coordinate
frame in SCENEST. (3) WGS84: World geodetic system, whose
coordinate origin is the Earth’s center of mass and usually
is used by GPS (Global Positioning System). Lane positions
(lanePosition) are relative positions and describe how far
an agent is from the starting point of its lane (which is
specified using a laneID). A lane position is described
by the lane ID and the distance/offset (realExpr) to the
starting point.

For example, as shown in Listing 1, Lines 5 and 13 define
the initial positions of the ego vehicle in the map coordinate
system and npc1 in the ego vehicle coordinate system, and
Line 16 specifies the destination position of npc1 in lane
position, which means the destination is on the lane with ID
lane_77 and 100 meters away from the starting point.
Heading. Heading describes the orientation of an agent by
specifying its deviation relative to a predefined direction. In
SCENEST, predefined directions can be the orientation of a
lane point, the ego vehicle, an NPC vehicle, or a pedestrian.
In the grammar rule for heading, angleV al is the real
angle value, unit is either degrees (deg) or radians (rad),
and direction is the predefined direction that the angle is
relative to. For instance, as stated in Line 12 of Listing 1,
npc1 has the same orientation as the ego vehicle.
State. Every agent in a scene has an internal state that con-
tains the position, the current direction it is heading, and its
current speed. When mutating the state (state) of an agent,
the position must always be specified, but the heading and
speed are optional, defaulting to zero if omitted. A fully-
filled state is given in Line 14 of Listing 1, where the last
one denotes npc1’s speed at the corresponding position.
Agent Types. Agents on the road, whether they are NPC
vehicles, pedestrians, or static obstacles, are associated with
agent types. SCENEST defines three different agent types
as follows: (1) Vehicle types (velType), which are utilised
to distinguish different vehicles. Vehicle agents can take
a specific type (e.g. a detailed vehicle model) or a more
generic type (e.g. car, bus, van, bicycle), which can be further
customised according to colour and material; (2) Pedestrian
types (pedType), which describe the different kinds of hu-

5

position ::= coordPosition | lanePosition lanePosition ::= laneID ’->’ realExpr
coordPosition ::= [coordFrame] coordExpr laneID ::= stringExpr
coordFrame ::= ’IMU’ | ’ENU’ | ’WGS84’

heading ::= angleV al unit [’related to’ direction]
direction ::= lanePosition | egoID | npcID | pedestrianID | ’EGO’

state ::= ’(’ position [’,’ [heading] [’,’ speed]] ’)’
velType ::= ’(’velSpecificType | velGenType[’,’ color] ’)’

velGenType ::= car | bus | van | truck | bicycle | motorcycle | tricycle
pedType ::= pedSpecificType | pedGenType pedGenType ::= ’(’ height ’,’ color ’)’

staticType ::= sphere | box | cone | cylinder
sphere ::= ’(’sphere, naturalV al ’)’ box ::= ’(’box, size ’)’
cone ::= ’(’cone, size ’)’ cylinder ::= ’(’cylinder, size ’)’

weather ::= kind ’:’ (continuousIndex | discreteLevel) time ::= hour ’:’ minute

Fig. 3: Simplified BNF grammar for scenes in SCENEST

man beings in the scene. Similar to vehicles, pedestrians can
take the type of a predefined pedestrian model, or a more
general form described by height and colour; (3) Static types
(staticType), which describe the shape and size of static
agents (e.g. boxes, cones, cylinders) that serve as obstacles in
the scene. For instance, Line 11 in Listing 1 specifies that the
model of npc1 is Sedan with the default colour and material.
Weather & Time. SCENEST can specify combinations of
weather in the environment, including different amounts of
sun, rain, fog, wetness, and snow. Weather can be quantified
using a real value between [0, 1] or a set of labels (e.g. light,
middle, heavy) which are mapped to predefined values.
Note that different kinds of weather can exist at the same
time. In addition to weather, time is another intrinsic com-
ponent of the environment. It is specified straightforwardly
using hours (0–23) and minutes (0–59). For instance, the
statements in Lines 47 and 48 of Listing 1 specify that the
weather at midday is raining moderately with a little fog
and high-level wetness.

3.2 Describing Scenarios

A key distinction of SCENEST in comparison to other scene
languages (e.g. [8]) is that it provides a domain-specific
way to specify scenarios, in which agents are executing
independent journey plans in an environment that is dy-
namically changing. Without specifying scenarios, many
real-world behaviours of AVs may not be properly tested.
Asking users to fully specify scenarios, however, would be
overwhelming. SCENEST strikes a balance by allowing them
to specify some key parts (e.g. journey waypoints) while
leaving the rest to automatic test generation. In particular,
SCENEST supports an agent-oriented style of programming,
where the motions of individual agents are specified in a
fully decoupled way.

We present the main features of the language that sup-
port this design in the following. A simplified BNF grammar
of the syntax for scenarios can be found in Figure 4.
Ego Vehicle. The ego vehicle (egoV ehicle) is the au-
tonomous vehicle equipped with the ADS under test. In
SCENEST, it is specified using the keyword AV, followed
by some optional parameters: the initial state (see state in
Figure 3) of the ego vehicle, its target state, and the type
of the vehicle. Note that if the parameters are not specified,
random values will be generated. Note that the language

does not require the user to specify anything about the
ego vehicle’s motion: this is because it is fully controlled
by the ADS under test. For example, Lines 3–9 define a
“Lincoln MKZ 2017” ego vehicle with the required motion
task, i.e., moving from the position (553090.05, 4182687.8)
in the ENU coordinate system to the lane position which is
50 meters away from the start of Lane lane_40.

NPCs, Pedestrians, Motion, & Static Obstacles. Scenes can
be populated with NPC vehicles (npcV ehicle), pedestrians
(pedestrian) and static obstacles (obstacle). For NPC vehi-
cles and pedestrians, SCENEST allows the user to (optionally)
specify not only their initial and target states but also their
motion. In contrast to Scenic [8], motion can be specified in
a fully decoupled and agent-oriented way. Motion can be
either uniform (uniformMotion) or based on waypoints
(waypointMotion). In uniform motion, the NPC vehicle or
pedestrian moves with a fixed speed as defined in the state.
In waypoint-based motion, the agent moves towards the
target position via a sequence of points as specified by the
user. For instance, Lines 11–17 in Listing 1 specify an NPC
vehicle npc1, as well as the required motion. For a static
obstacle, users only need to describe its position and type
(staticType).

Environment. SCENEST allows to specify environments, i.e.,
weather and day of time, in scenarios, which can be changed
via fuzzing. We can specify the environment explicitly (env)
with the keywords Environment, or leave the parameters
empty in order to use the default environment settings. For
instance, Lines 47–49 in Listing 1 define an Environment by
the variable env.

Scenario Definition. Finally, we can create a scenario fea-
turing combinations of all of the above aspects in SCENEST
using the CreateScenario keyword (scenario). The user
specifies the map to load, the ego vehicle, lists of NPCs
and pedestrians (associated with their independent unifor-
m/waypoint motion configurations), a list of static agents,
and (optionally) the environment. Note that our simplified
grammar omits the rules for lists of vehicles, pedestrians,
and obstacles: they are simply comma-delimited lists de-
fined in the standard way. For instance, Lines 50–55 in
Listing 1 give an example of scenario declaration.

6

scenario ::= ’CreateScenario({’ map ’;’ egoV ehicle ’;’ npcV ehicleList ’;’
pedestrianList ’;’ obstacleList ’;’ [env ’;’] ’}’

egoV ehicle ::= ’AV(’ [state ’,’ state [’,’ velType]] ’)’
motion ::= uniformMotion | waypointMotion

uniformMotion ::= ’Uniform(’ state ’)’
waypointMotion ::= (’Waypoint’ | ’WP’ | ’W’) ’(’ stateList ’)’

npcV ehicle ::= ’Vehicle(’ [state [’,’ [motion] [’,’ [state] [’,’ velType]]]] ’)’
pedestrian ::= ’Pedestrian(’ [state [’,’ [motion] [’,’ [state] [’,’ pedType]]]] ’)’
obstacle ::= ’Obstacle(’ [position [’,’ staticType]] ’)’

env ::= ’Environment(’ [time ’,’weather] ’)’

Fig. 4: Simplified BNF grammar for dynamic scenarios in SCENEST

3.3 Semantics of SCENEST
SCENEST specifies the motions of NPC vehicles and pedes-
trians, and other environment-related information, such as
time and weather. Even though SCENEST only describes the
motion task of the ego vehicle, the trajectory of the ego ve-
hicle is determined by the ADS under test. Hence, SCENEST
describes a complete scenario. We define the semantics of
SCENEST as a trace, which is a sequence of scenes, describing
scene changes in the scenario. Here a scene is a snapshot,
at some time instant, of the physical world (including the
status of all agents defined in SCENEST) and the ADS world
(including the perception results of these agents and traffic
conditions by the ADS).

Definition 1. A scene is a mapping θ such that:
• θ(map) is the map (i.e., a map name);
• θ(time) is the time;
• θ(weather) is the weather;
• θ(ego) is the status of the ego vehicle, including the position,

orientation, velocity, and acceleration;
• θ(npc, truth) maps each NPC vehicle npc to its status, includ-

ing position, orientation, velocity, acceleration, and size, in the
real world;

• θ(ped) maps each pedestrian ped to its status, i.e., its position,
orientation, velocity, acceleration, and size, in the real world;

• θ(obs) maps each static obstacle obs to its position and size in
the real world;

• θ(traffic) returns the status of different traffic signs, such as
traffic lights, stop sign, and speed limit, in the real world;

• θ(npc, perception) maps each NPC vehicle npc to its percep-
tion status in the ADS world;

• θ(ped, perception) maps each pedestrian ped to its perception
status in the ADS world;

• θ(obs, perception) maps each static obstacle obs to its percep-
tion status in the ADS world;

• θ(traffic, perception) returns the perception status of differ-
ent traffic signs in the ADS world.

In SCENEST, each agent is executed in parallel. The NPC
vehicles and pedestrians move according to their defined
motions independently, while the motion of the ego ve-
hicle is generated by the ADS, which detects the status
of other agents with a given frequency and computes the
trajectory. Hence, the execution of SCENEST can be described
by a sequence of scenes via time discretization. During the
execution, the agents should satisfy some constraints. (1)
SCENEST does not allow the change of maps during the
execution of a scenario. (2) At each scene, each agent should

be on the feasible region of the map, which means that their
positions should not exceed the region of the defined map.
(3) Each vehicle should move along the lanes in the map
and cannot move backward on the same lane. Note that
pedestrians may move around the feasible region of the
map. (4) A vehicle or pedestrian should follow its speed
limit. (5) Different agents in the initial scene θ0 should be
located at different positions. Note that during the execution
of the scenario, we do not require, also cannot guarantee,
collision avoidance among the agents. (6) If users specify
some particular waypoints of an agent in SCENEST, the
agent should pass through these waypoints during the
scenario execution. Hence, the semantics of SCENEST can be
described as follows.

Let A(θ0(map)) and L(θ0(map)) be the feasible region
and the lane region in the map, respectively, agent be the set
of agents defined in SCENEST, p(θ(e)) and vs(θ(e)) be the
position and speed of agent e at θ, vsmax(e) be the maximal
speed of e, l(θ(npc)) be the lane where the NPC vehicle npc
is running along at scene θ. Moreover, WP (e), e ∈ agent,
denotes the waypoints of agent e specified in SCENEST. Note
that it can be an empty set.

Definition 2. A trace of SCENEST scenario is a sequence of
scenes, denoted as π = 〈θ0, θ1, . . . , θn〉, satisfying the following
constraints.

∀θi ∈ π, θi(map) = θ0(map), (1)
∀e ∈ agent, p(θi(e)) ∈ A(θi(map)), (2)

p(θi(npc)) ∈ L(θi(map)), (3)

l(θi(npc)) = l(θi+1(npc)) , li →
d(p(θi(npc)), li) ≤ d(p(θi+1(npc)), li), (4)

vs(θi(e)) ≤ vsmax(e), (5)
∀e1, e2 ∈ agent, p(θ0(e1)) 6= p(θ0(e2)), (6)

∀wp ∈WP (e), ∃θk, 3 wp ∈ θk(e), (7)

where d(p(θi(npc)), li) is the distance from the start point of
lane li to the position p(θi(npc)).

Currently, SCENEST models the behaviour of each agent
independently. However, it can also depict complex scenar-
ios by separating the interactions among different agents
into their individual actions. For instance, we can specify the
waypoints of NPC vehicles to describe various interactions
among them.

7

4 AVSPEC: SPECIFYING CORRECTNESS PROP-
ERTIES

In this section, we summarize the syntax and semantics of
AVSpec, our language for specifying AV correctness prop-
erties. In contrast to existing AV testing approaches, which
tend to focus on fixed oracles (e.g. no collisions) and lack the
flexibility to customize specifications, AVSpec allows users
to tailor richer specifications to their desired requirements
and scenarios, independent of the implementation of ADSs,
on how the ego vehicle behaves across the multitude of
scenarios it encounters during its journey.

4.1 Trajectories, Expressions, and Assertions
Given a trace π = 〈θ0, θ1, . . . , θn〉, we can use AVSpec to
assert properties along the trace. In this section, we present
the syntax of trajectories, five basic types of expressions
involving them (i.e., perception difference, position, velocity,
speed and acceleration), and assertions. A simplified BNF
grammar for these language features is given in Figure 5.
Agent Trajectories. AVSpec can be used to denote the
trajectory of the ego vehicle, the perceived trajectories of
NPC vehicles and pedestrians by the ADS, and their true
trajectories. The trajectory of the ego vehicle with respect to
a trace can be obtained by the statement given in Line 2 of
Listing 2. In AVSpec, each other agent’s truth trajectory and
the trajectory perceived by the ADS can be obtained using
the form given in Lines 3 and 4 of Listing 2, respectively,
which describe the trajectories of npc1. Note that the agent
can be either an NPC vehicle or a pedestrian specified by
the user in a SCENEST scenario.
Perception Difference Expressions. The perception systems
of ADSs are currently far from perfect, which makes it
important to specify properties regarding the difference be-
tween the perceived scene and the actual scene. In AVSpec,
such a difference (perceptionDiffExpr) is declared with
the keyword diff. For example, Line 5 in Listing 2 de-
scribes the perception difference with respect to npc1.
Expressions for Distance, Speed, Velocity, & Accelera-
tion. AVSpec supports multiple kinds of expressions that
are important for motion-related specifications. First, one
can write an expression over the distance (distanceExpr)
between two agents or between an agent and a specific
position (position) along the trace. AVSpec treats the latter
as a special single-point polygon. For example, Line 6 in
Listing 2 defines the truth distance between the ego vehicle
and npc1. Second, AVSpec can describe the difference of
the speed, velocity and acceleration between two agents or
between an agent and a specific value using the keywords
spd, vel, and acc, respectively. For instance, Line 11 in
Listing 2 specifies the truth speed difference between the
ego vehicle and npc1. In AVSpec, speed is a real scalar, while
velocity and acceleration are vectors.

Note that while not shown in our grammar, basic arith-
metic operators can also be applied to the above expressions.
For example, the following code:

1 ave_diff = (diff_np1 .+ diff_npc2 .+ diff_ped) ./ 3;

expresses the average perception error of the ADS per-
ception module with respect to two NPC vehicles and a
pedestrian. Here AVSpec applies “.+”, “.-”, “.*” and “./” to

describe element-wise addition, subtraction, multiplication,
division on different expressions, respectively.
Assertions. AVSpec supports different assertions over the
previously defined expressions, e.g. properties about the ego
vehicle’s acceleration behaviour. These assertions support
temporal operators (e.g. always, eventually, until) which are
interpreted over traces. A simplified BNF grammar for these
language features is given in Figure 5.

In AVSpec, the atomic predicates (atomicPredicate) are
defined over the above expressions and the relational op-
erators (e.g. ==,!=,>,>=). For instance, the following three
atomic predicates respectively assert that some distance is
larger than one, that some agent is not stationary, and that
some average perception difference is less than 0.5:

1 predicate_0 = dis1 > 1;
2 predicate_1 = speed_dis > 0;
3 predicate_2 = ave_diff <= 0.5;

Based on the atomic predicates, AVSpec specifies general
assertions using the Signal Temporal Logic (STL) formalism
with temporal operators (i.e., ‘always’ (G), ‘eventually’ (F),
‘until’ (U), and ‘next’ (X)) and logical operators (i.e., ‘and’
(&), ‘or’ (|), ‘not’ (˜), and ‘implies’ (->)). For example, Lines
7, 9, and 12 in Listing 2 show three general assertions for
safety specifications.

4.2 Semantics

In the following, we define the semantics of AVSpec. Let
vs(t), p(t), q(t), v(t), a(t), and κ(t) be the speed, position,
orientation, velocity, acceleration, and shape of some agent
at time instant t, where vs(t) ∈ R, p(t), v(t), a(t) ∈ R3,
q(t) ∈ R4 is a unit quaternion, and κ(t) is described as a
polygon. We add the subscript to describe the related agent.
Hence, at any time instant t, the status of the ego vehicle
is denoted as Xe

0(t) = [pe(t), qe0(t), ve0(t), ae0(t), κe0(t)]; let
Xα
i (t) = [pαi (t), qαi (t), vαi (t), aαi (t), καi (t)] and Xβ

i (t) =
[pβi (t), qβi (t), vβi (t), aβi (t), κβi (t)] be the status of agent ei,
either an NPC vehicle or a pedestrian, obtained from the
perception module and the ground truth, respectively.
Expression semantics. For the expression semantics, we
explain the computation of the sequences of perception dif-
ference, position distance, velocity distance, speed distance,
and acceleration distance along a trace.

Definition 3. Given the perception result Xα
i and the ground

truth Xβ
i of an agent ei, the perception difference at time instant t

is defined as the weighted sum of the errors of position, orientation,
velocity, and shape.

diff(Xα
i , X

β
i)(t) =w1d1(pαi (t), pβi (t)) + w2d2(qαi (t), qβi (t))

+w3d3(vαi (t), vβi (t)) + w4d4(καi (t), κβi (t)),

where d1(pαi (t), pβi (t)) = ‖pαi (t) − pβi (t)‖2, d2(qαi (t), qβi (t)) =

arccos qαi (t) · qβi (t), d3(vαi (t), vβi (t)) = ‖vαi (t) − vβi (t)‖2,

d4(καi (t), κβi (t)) = 1 − |καi (t)
⋂
κ
β
i (t)|

|κβi (t)|
, |κ| denotes the area of

the polygon κ, and w1 − w4 are normalized weights satisfying
w1 + w2 + w3 + w4 = 1.

Given an agent e, let fκ(e, t), fs(e, t), fv(e, t), fa(e, t)
be the polygon, speed, velocity, and acceleration of e at t,
respectively. Note that here e can also be a single position,

8

objectTrajectory ::= egoTrajectory | agentPerceivedTrajectory | agentTrueTrajectory
egoTrajectory ::= trace ’[’ ego ’]’

agentPerceivedTrajectory ::= trace ’[perception][’ (npcV ehicle | pedestrian | obstacle) ’]’
agentTrueTrajectory ::= trace ’[truth][’ (npcV ehicle | pedestrian | obstacle) ’]’
perceptionDiffExpr ::= ’diff(’ agentPerceivedTrajectory ’,’ agentTrueTrajectory ’)’
distanceExpr ::= ’dis(’ (position | objectTrajectory) ’,’ (position | objectTrajectory) ’)’

speedExpr ::= ’spd(’ (speed | objectTrajectory) ’,’ (speed | objectTrajectory) ’)’
velocityExpr ::= ’vel(’ (velocity | objectTrajectory) ’,’ (velocity | objectTrajectory) ’)’

accelerationExpr ::= ’acc(’ (velocity | objectTrajectory) ’,’ (acceleration | objectTrajectory) ’)’
assertion ::= atomicPredicate | assertion (’&’ | ’|’ | ’->’) assertion | ’˜’ assertion |

(’G’ | ’F’ | ’X’ | ’U’) assertion |
(’G’ | ’F’ | ’U’) ’[’ realExpr ’:’ realExpr ’]’ assertion

Fig. 5: Simplified BNF grammar for trajectories, expressions, and assertions in AVSpec

speed, velocity, or acceleration. We have the following se-
mantics for the position, speed, velocity, and acceleration
expressions.

Definition 4. Given two agents e1 and e2, the computations of
dis(e1, e2), spd(e1, e2), vel(e1, e2), acc(e1, e2) are defined as
follows.

dis(e1, e2)(t) = min
p1∈fκ(e1,t),
p2∈fκ(e2,t)

‖p1 − p2‖2, e1, e2 ∈ X ∪ {p},

spd(e1, e2)(t) =fs(e1, t)− fs(e2, t), e1, e2 ∈ X ∪ {vs},
vel(e1, e2)(t) =‖fv(e1, t)− fv(e2, t)‖2, e1, e2 ∈ X ∪ {v},
acc(e1, e2)(t) =‖fa(e1, t)− fa(e2, t)‖2, e1, e2 ∈ X ∪ {a},

where X = {Xe(t), Xα
i (t), Xβ

i (t)}, and p, vs, v, and a are
constant variables.

Quantitative semantics of AVSpec. In AVSpec, we apply
the quantitative semantics of STL to measure the degree of
satisfaction of an AVSpec assertion. STL, a kind of temporal
logic formalism, can specify a linear-time logical property
of continuous real-valued signals [29] and is widely applied
in the cyber-physical system whose programs are closed
intertwined with the physical world. For the details of the
quantitative semantics of STL, please refer to [29]–[31]. The
successful application of STL in testing CPSs and AVs [26],
[27], [32], [33] motivated us to formalise different specifica-
tions. Unlike existing work, AVUnit provides a general and
extensible language to formalise some basic specifications
(e.g., collision avoidance and task completion) and support
customising different specifications.

Let U , 2, 3 and© be the operators of “until”, “always”,
“eventually” and “next”, respectively; I is a real-time inter-
val [a, b] (0 ≤ a < b) of [a,+∞) with the interval operation
t + I = [t + a, t + b]. According to the syntax of STL, an
AVSpec assertion φ can be described as:

φ := µ | ¬φ | φ1 ∧ φ2 | φ1 ∨ ϕ2 | φ1 → ϕ2 |
φ1 UI ϕ2 | 2Iφ | 3Iφ| © φ

where the atomic predicate µ = f(π) ≥ 0 can be written as
“f1 op f2” on a trace π, which is defined as:

f(π) =

f1(π)− f2(π), op ∈ {>,≥};
f2(π)− f1(π), op ∈ {<,≤};
|f1(π)− f2(π)| , op ∈ {! =};
− |f1(π)− f2(π)| , op ∈ {==};

where f1 and f2 are two expressions described as
the arithmetic combinations of diff(Xα

i , X
β
i), dis(e1, e2),

spd(e1, e2), vel(e1, e2), and acc(e1, e2). Note that at any time
instant t, the untimed operators U , 2 and 3 are equal to the
timed operators with a = 0 and b = |π| − t.

Applying the quantitative semantics of STL, in the fol-
lowing, we define the quantitative semantics for AVSpec,
which allows us to evaluate not only whether an AVSpec
assertion φ is satisfied but also how far it is from being
violated or satisfied. Note that the latter is important for
our feedback-guided fuzzing algorithm.

Definition 5 (Quantitative Semantics). Given a trace π and
an AVSpec assertion φ, the quantitative semantics is defined as
the robustness degree ρ(φ, π, t) which returns a real value. The
function ρ is defined as follows.

ρ(µ, π, t) = f(π)(t),

ρ(¬φ, π, t) = −ρ(φ, π, t),

ρ(φ1 ∧ φ2, π, t) = min{ρ(φ1, π, t), ρ(φ2, π, t)},

ρ(φ1 ∨ φ2, π, t) = max{ρ(φ1, π, t), ρ(φ2, π, t)},
ρ(φ1 UI φ2, π, t) = sup

t′∈t+I
min{ρ(φ2, π, t

′), inf
t′′∈[t,t′]

ρ(φ1, π, t
′′)},

ρ(3Iφ, π, t) = sup
t′∈t+I

ρ(φ, π, t′),

ρ(2Iφ, π, t) = inf
t′∈t+I

ρ(φ, π, t′),

ρ(©φ, π, t) = ρ(φ, π, t+ 1).

For example, suppose the distance sequence between
the ego vehicle and the NPC vehicle npc1 of a trace π
is {(t, d) : (t0, 10), (t1, 8.69), (t2, 7.32), (t3, 6.3), (t4, 5.4),
(t5, 4.5), (t6, 5.0), . . ., (tn, dn), . . .} where dn > 5.0 when
tn > t6, and the related assertion is µ = G(d > 3.0), then
we have ρ(µ, π, t0) = 1.5, and the minimal one is reached at
t5. It means that the assertion µ is satisfied for π.

5 FUZZING

AVUnit features two feedback-guided scenario generation
algorithms that automatically search for test cases likely to
trigger violations of the correctness specification (i.e., the
AVSpec assertion), and cover different ways of violating the
assertion. They are a kind of search-based fuzzing algo-
rithm [34]. The idea is to keep evolving a test suite using

9

Algorithm 1: Failure-Inducing Fuzzing Algorithm.
Input: SCENEST script S with assertion φ; population

size n; crossover and mutation probabilities cp
and mp; top criteria.

Output: A set of test cases that violate φ: S.
1 S = ∅;
2 Evaluate the initial test case described in S;
3 if S violates φ then
4 S = {S};
5 end
6 Generate a set of random test cases based on S,

denoted as T0 = {s1, . . . , sn}, where T0[i] = si;
7 repeat
8 Simulate each test case si in T0 using a simulator

and obtain a trace πi;
9 Compute the robustness ρ(φ, πi);

10 if ρ(φ, πi) < 0 then
11 S = S ∪ {si}
12 end
13 T = ∅;
14 Sort T0 according to ρ(φ, πi) in ascending order;
15 repeat
16 Randomly select two test cases, one from the

first half of the sorted T0 and another from T0;
17 Add the test case with lower robustness to T ;
18 until |T | < n;
19 k = 1;
20 while k < n do
21 Generate a random value p ∈ [0, 1];
22 if p < cp then
23 T [k], T [k + 1] = Crossover(T [k], T [k + 1]);
24 end
25 k = k + 2;
26 end
27 for k = {1, 2, . . . , n} do
28 Generate a random value p ∈ [0, 1];
29 if p < mp then
30 T [k] = Mutation(T [k]);
31 end
32 end
33 T0 = T ;
34 until timeout or the top criteria has been satisfied;
35 return S.

the robustness of the test cases against the AVSpec assertion
and the failure coverage measure as the objective functions.

5.1 Failure-Inducing Fuzzing

The overall fuzzing algorithm for failures is shown in Al-
gorithm 1. Note that the objective is to identify test cases
that fail the assertion in this setting. The overall algorithm
is a genetic algorithm (GA), customized for the purpose of
testing AVs based on a SCENEST script S and an AVSpec
assertion φ. The output is a set of test cases that are allowed
by S and fail φ. We first randomly generate a test suite based
on the scenario described in the SCENEST script as the initial
population. Following this, we can produce different gen-
erations via selection, crossover, and mutation. Although
the overall process adheres to the general framework of
CPS testing [26], [27], [32], [33], we encounter particular
challenges specifically related to the crossover and mutation
operations, which will be elaborated on in detail. Before
giving the details, we first describe population encoding.

Population encoding. Based on the syntax of SCENEST, a
test case contains the ego vehicle, NPC vehicles, pedes-
trians, static obstacles, and the environment. The operable
parameter for the ego vehicle is its initial position. Note
that the target position is the task to be tested, so we do
not mutate it, while other parameters characterizing the ego
vehicle (e.g., vehicle type, vehicle color, and vehicle size) do
not affect the execution of the ADS significantly. Without
loss of generality, we assume that each NPC vehicle or
pedestrian is stationary at the end position (if specified).
If a non-zero speed is required at a position, one can set one
more waypoint with zero speed after this position. Hence,
for each NPC vehicle or pedestrian, we can change every
possible parameter except the speed at the last position. For
static obstacles and the environment, we can operate on all
parameters that are used to characterize them.

We classify these operating parameters into eight cat-
egories: position, speed, vehicle type, pedestrian type, obstacle
type, color, day time, and whether. The category of position is
further divided into three sub-categories: vehicle positions
(i.e, ego positions and NPC vehicles’ positions), pedestrian
positions, and obstacle positions. This is because vehicles
in a scenario are usually required to move along lanes,
while pedestrians may move around the empty regions of
the map, and obstacles can be placed at any point of the
map (e.g, on the road, in a tree, or on the roof). Similarly,
the category of speed is divided into vehicle speed and
pedestrian speed since they have different ranges.

Among the above categories, speed and position are
continuous variables, so we apply real-value encoding for
vehicle speed, pedestrian speed, vehicle position, pedestrian
position, and obstacle position. In detail, for an NPC vehicle,
even though we can change the lane sequence of a vehicle,
users may be interested in this specific route described in
SCENEST. So, in our fuzzing algorithm, we do not change
the lane sequence. Since vehicles are moving along lanes,
their positions can be translated to lane positions, allowing
the encoding of each position to be described by its offset
in the lane position format. Hence, for each NPC vehicle, its
speed and position offset are organized sequentially based
on the sequence of waypoints, including the initial and
target waypoints. Then, the speed and the position of all
NPC vehicles are concatenated in the same sequence to form
the chromosomes of vehicle speed and vehicle position,
respectively. The encoding of pedestrian speed is the same
as that for NPC vehicle speed. For position encoding of
pedestrians and obstacles, since their motion may not move
along a lane, we use coordinate positions to describe their
locations. Each coordinate position is encoded as a gene.
Similarly, the positions of all pedestrians (resp., obstacles)
are concatenated sequentially to form the chromosome of
pedestrian (resp., obstacle) position.

The categories of vehicle type, pedestrian type, obstacle
type, color, and time of day are discrete ones. Each of them
is encoded as a discrete vector. The category of weather
is a dictionary variable whose keys and values are the
types of weather and the quantification of the weather type,
respectively. Note that if the value of a weather type is
described as a predefined level label (e.g., small, middle),
it will be transferred to a real value in [0, 1]. Hence, the
weather can be encoded as a vector [0, 1]|wk|, where |wk| is

10

TABLE 1: Encoding of Vehicles

ego npc1 npc2 npc3 npc4 npc5
offset [10.27, 40.27, 1, 10, 100 60.27, 10, 50, 100, 40]
speed [6, 2, 6, 6, 5.8, 8, 0]
type [1, 3, 5, 6, 4]

TABLE 2: Encoding of The Pedestrian ped

position [(553011, 4182689.7), (553011,4182681.5),
(553011, 4182673.18)]

speed [1, 1]
type [6]

the number of weather kinds defined in a simulator.
Example of population encoding in AVUnit. As an exam-
ple, we show the population encoding of the motivating
example. In this example, suppose all possible NPC ve-
hicle types and pedestrians are [Sedan, SUV, Jeep, Hatch-
back, SchoolBus, BoxTruck] and [Bob, EntrepreneurFemale,
Howard, Johny, Pamela, Presley, Robin, Stephen, Zoe], re-
spectively, and the available weather types are [rain, fog,
wetness]. Hence, the encoding of the vehicles and the pedes-
trian is shown in Tables 1 and 2. Weather and time are
encoded as [0.5, 0.1, 0.8] and [12, 0], respectively.
Selection. Since our target is to generate test cases with
negative robustness, we first sort the population according
to their robustness in ascending order. The selection of
an individual is described as follows. We first select an
individual from the first half of the population and then
select an individual from the whole population. Finally, the
individual with lower robustness is selected from the two
individuals. Repeating the selection process, we can select a
parent population with the given number of individuals.
Crossover. For each pair of test cases, the crossover can
be done only in the same category. In theory, we can
perform crossover for each category. However, crossover on
positions may cause infeasible scenarios which violate the
constraint described in Equation 4 in Definition 2. Hence, to
guarantee the feasibility of the new individual, we do not
perform crossover on the vehicle and pedestrian position
chromosomes.
Mutation. We can do mutation for each category. For con-
tinuous categories, i.e., position, speed, and weather, we
apply Gaussian mutation. To guarantee the feasibility of
motion, we need the clipping function to guarantee that all
speeds are positive, no backward motion in the waypoints
of NPC vehicles, and each weather quantification is in [0, 1].
For discrete categories, we apply random mutation, i.e.,
randomly select one value from the corresponding set.

5.2 Failure-Coverage Fuzzing
Given an AVSpec assertion φ, there may be different ways of
violating it. We thus define a specification-based coverage,
failure coverage, to measure the test sufficiency based on
the number of predicates that could violate φ. The existing
coverage-based methods usually concentrate on the behav-
ior sequence of a scenario, such as [35]. Instead, our goal
is to produce scenarios that can provoke various ways of
violating the specification when failure scenarios occur.

Let Γ(φ) be the set of all such predicates, called failure
predicates, whose satisfaction will lead to the violation of φ.

Based on the syntax of AVSpec, each assertion can be written
as one of the following formulas: q1&q2, q1|q2, q1 → q2, ¬q1,
G q1, F q1, q1 U q2, and X q1. Hence, Γ can be defined
iteratively as follows.

Definition 6. Given an assertion, the set of failure predicates can
be computed as follows.
• Γ(p) = {¬p} if p is an atomic predicate,
• Γ(q1&q2) = (Γ(q1)&q2)

⋃
(q1&Γ(q2))

⋃
(Γ(q1)&Γ(q2)),

• Γ(q1|q2) = Γ(q1)&Γ(q2),
• Γ(q1 → q2) = q1&Γ(q2),
• Γ(¬q1) = q1,
• Γ(G q1) = F Γ(q1),
• Γ(F q1) = G Γ(q1),
• Γ(q1Uq2) = (Γ(q1)&Γ(q2))

⋃
((q1&Γ(q2))U(Γ(q1)&Γ(q2))),

• Γ(Xq1) = X(Γ(q1)),

where the operators on two sets A and B can be described as
follows: A&B = {q1&q2 : ∀q1 ∈ A,∀q2 ∈ B}, F A = {F q :

∀q ∈ A}, G A = {G q : ∀q ∈ A}, X A = {X q : ∀q ∈ A}, and
A U B = {q1 U q2 : ∀q1 ∈ A,∀q2 ∈ B}.

Example for the computation of failure predicates. We
illustrate the generation of failure predicates of the follow-
ing assertion q = p1&p2&p3, where p1 - p3 are atomic
predicates. Let q1 = p1&p2, we have:

Γ(q1) = (Γ(p1)&p2) ∪ (p1&Γ(p2)) ∪ (Γ(p1)&Γ(p2))

= {¬p1&p2} ∪ {p1&¬p2} ∪ {¬p1&¬p2}
= {¬p1&p2, p1&¬p2,¬p1&¬p2}

Γ(q) = (Γ(q1)&p3) ∪ (q1&Γ(p3)) ∪ (Γ(q1)&Γ(p3))

Γ(q1)&p3 = {¬p1&p2&p3, p1&¬p2&p3,¬p1&¬p2&p3}
q1&Γ(p3) = {p1&p2&¬p3}
Γ(q1)&Γ(p3) = {¬p1&p2&¬p3, p1&¬p2&¬p3,¬p1&¬p2&¬p3}

Given an assertion q, Γ(q) contains all formulas that
violate q, and our failure coverage measures how many
formulas in Γ(q) are covered. Given a scenario S whose
generated trace is π, let V (S) = {q̃ ∈ Γ(q) : (π, t) � q̃}.
Hence, the failure coverage of a set of scenarios S can be
defined as follows.

Definition 7. Given a set of scenarios S and a testing asser-
tion q, the failure coverage, denoted as cov(S, q), is defined as
cov(S, q) = | ∪S∈S V (S)|/|Γ(q)|.

Clearly, a larger failure coverage will result in diverse
violated test cases, which has a higher probability to gener-
ate more issues for the ADSs under test. Hence, our failure-
coverage fuzzing algorithm aims to generate a test suite that
can cover as many failure predicates as possible, as given
in Algorithm 2. Given an assertion φ, we first compute its
failure predicates Γ(φ) (Line 1) and then generate a set of
initial test cases randomly (Line 2). At each generation, the
execution of each test case si generates a local robustness
vector ρiΓ containing the robustness of the failure predicates
with respect to πi (Line 8) and updates the global robust-
ness vector ρΓ, which indicates the covered, as well as the
maximal robustness, and uncovered failure predicates (Line
9) until now. Hence, the test cases are divided into two
subsets, i.e., Tα and T β . The test cases in Tα cover new
failure predicates (i.e., Lines 11 and 12), while the rest test
cases are associated with the corresponding fitness values
fρ(si). The fitness value of each test si in T β is defined as

11

Algorithm 2: Failure-Coverage Fuzzing Algorithm.
Input: A SCENEST script S; an assertion φ; a

population size n, and the maximal number of
generations G

Output: A test suite
1 Generate the set of failure predicates of φ: Γ(φ);
2 Randomly generate the initial population

T = {s1, . . . , sn};
3 Initialize the set of satisfied failure predicates Γc(φ) = ∅

and the global robustness vector
ρΓ = [ρΓ(φi) = −∞ : ∀φj ∈ Γ(φ)];

4 repeat
5 Tα = T β = T βn = ∅ ;
6 for each si in T do
7 Execute si via simulation and obtain trace πi ;
8 Compute the local robustness vector:

ρiΓ = [ρiΓ(φj) = ρ(φj , πi) : φj ∈ Γ(φ)] ;
9 Update ρΓ(φj) to ρiΓ(φj) if ρiΓ(φj) > ρΓ(φj) > 0 ;

10 Obtain the satisfied predicates in Γ(φ):
Γic(φ, si) = {φj : ρ(φj , πi) > 0};

11 if Γic(φ, si) \ Γc(φ) 6= ∅ then
12 Tα = Tα ∪ {si}; Γc(φ) = Γc(φ) ∪ Γic(φ, si)
13 else
14 compute the fitness: fρ(si) = max{ρiΓ(φj) :

ρiΓ(φj) < 0 ∧ ρΓ(φj) < 0} ;
15 T β = T β ∪ {(si, fρ(si))}
16 end
17 end
18 if T β 6= ∅ then
19 Sort T β according to fρ(si) in descending order;
20 repeat
21 Randomly select two test cases, one from the

first half of T β and another from T β ;
22 Add the one with a larger fitness to T βn ;
23 until |T βn | = |T β |;
24 end
25 T ′ = Tα ∪ T βn ;
26 Apply the crossover and mutation operators

described in Section 5.1 to T ′ to generate the next
population, denoted as T ;

27 until timeout or the coverage criteria has been satisfied;

the maximal robustness of the uncovered failure predicates
in ρiΓ (Line 14). Then, we select the same number of test
cases, denoted as T βn , from T β if T β 6= ∅ (Lines 18–24). The
selection process will select test cases with larger negative
robustness for the uncovered predicates. Finally, we apply
the crossover and mutation operators described in Section
5.1 to the new test cases T ′ and generate the population of
the next generation.

6 EVALUATION

We implement AVUnit with LGSVL+Apollo and aim to ask
the following research questions.
RQ1: Expressiveness: What scenarios and specifications can
AVUnit describe?
RQ2: Effectiveness: What ADS issues can AVUnit discover?
RQ3: Efficiency: How efficiently can AVUnit discover ADS
issues?

To answer RQ1, based on the standards, such as Open-
Scenario [6] and the framework from US Department of
Transportation [36], for the description of autonomous driv-
ing scenarios, we summarize the main features to describe

!"#$% &'

!&#(&

!)*+,#&)'%

!"#$#!%

&'!()*

+,-.)-

!/012,34-

&5,(3)-

!-.%#()'

/01 #!!.(&)'%

('2+!&%.!!3-'4.(#5.

!&#&.6&(#-.

!"#$%&'"() *)+",()#*)'

&6!7&5,(3)-849/34-

:1;;/9<

#9</9)

!-.%#()'!

(.#-7 &7. !&'"

!&#&. #%8 "('-.!!

#"',,' *.!!#5.!

,'-#,6

&(#9.-&'(:6

!-.%.

Fig. 6: The implementation of AVUnit with the
LGSVL+Apollo simulation environment.

a scenario and describe how SCENEST can satisfy these
features. We also compare it against other state-of-the-art
languages.

To answer RQ2 and RQ3, we apply AVUnit to con-
duct testing on Baidu Apollo, one of state-of-the-art ADSs.
Apollo is the only production-scale ADS with an open-
source version. It has been deployed in real vehicles to drive
on some restricted public roads, e.g., autonomous driving
Lincoln MKZ1 and Baidu’s Apollo robotaxi2. Fig. 6 shows
our modularised implementation on the LGSVL+Apollo
simulation platform. It contains five modules: (1) the parser
module to parser the textual input and extract the scenario,
(2) the simulation adapter to preprocess the scenario so
to spawn the scenario to the specific simulation environ-
ment, (3) the ADS middleware for communication between
AVUnit and the simulation environment, (4) monitor to
check whether the execution of a test case violates the
assertion, and (5) a fuzzing engine to generate new test cases
for checking in order the identify counterexamples.

The simulation starts by invoking the simulator adapter
to spawn a given scenario s in the simulator. It will set the
simulation environment (like time and weather), the initial
scene of s, and the trajectories of the NPC vehicles and
pedestrians described in s, and then start the simulation.
The detailed execution can be described as follows. At any
time instant, the simulator sends the current scene to the
ADS, based on which the ADS computes a local trajectory
for the ego vehicle and sends it back to the simulator.
Thus, according to the dynamic equations, the simulator
ensures the ego vehicle and other agents move along their
trajectories. Note that the trajectories of other agents are
predefined in s, and the simulator will send scenes at a given
rate. When the received scene triggers the requirement of
re-computation, the ADS computes a new local trajectory,
and the simulator controls the movement of the ego vehicle
based on the new trajectory. Once the ego vehicle reaches
a stop state (e.g., arrives at the destination, causes a colli-
sion, or reaches the maximal motion time), the execution
is completed. The ADS adapter collects and processes the
ADS messages to generate the state trace for specification
checking.

To illustrate the usage of AVUnit and evaluate its effec-
tiveness, we extract eight general scenarios from the report
of the U.S. Department of Transportation [36] according to

1. https://medium.com/apollo-auto/baidu-apollo-receives-driverl
ess-vehicle-test-permit-in-california-c332ad5976de

2. https://iot-automotive.news/baidu-apollo-robotaxi/

https://medium.com/apollo-auto/baidu-apollo-receives-driverless-vehicle-test-permit-in-california-c332ad5976de
https://medium.com/apollo-auto/baidu-apollo-receives-driverless-vehicle-test-permit-in-california-c332ad5976de
https://iot-automotive.news/baidu-apollo-robotaxi/

12

the availability of the San Francisco HD map provided by
LGSVL. They are: T-Junction (S1), intersection with single-
direction roads (S2), intersection with double-direction roads (S3),
intersection with mixed-direction roads (S4), intersection with
stop signs (S5), lane changing within a road (S6), lane changing
among different roads connected by an intersection (S7), and
overtaking scenario (S8). It is worth noting that the regions
in these scenarios are selected such that the corresponding
lane gaps are suitable for Apollo to perform lane changes,
as due to the automatic HD map generation, some lane gaps
are otherwise too large. In this paper, we consider two kinds
of assertions: collision avoidance and task achievement.
• Collision avoidance assertion: statement1 = G (dis 1 >=

rho1 & dis 2 >= rho1 & . . . & dis n >= rho1), where
n is the number of NPC vehicles in a scenario, dis i =
dis(ego traj, trace[npc i]) is the distance expression, and
rho1=0.5 meters is the threshold of safety distance.

• Task achievement: statement2 = F dis(ego traj,
ego target position) <= rho2, where dis(ego traj,
ego target position) is the distance expression for the
distance between the current state of the ego vehicle and
its destination, rho2=2 meters is a tolerance threshold.

Hence, the final assertion φ is described as “statement1
& statement2”. The corresponding SCENEST scripts can be
found at our website: https://avunit2021.github.io/. Note
that Apollo’s open-source version focuses more on safety-
related requirements, and sometimes, it is hard for us to
confirm whether a performance-related issue (e.g., a large
jerk during the motion) is an issue caused by the ADS.
Hence, we focus on two safety specifications in our experi-
ments. However, the performance-related specifications can
be used by the ADS’s developers, testers, and users.

Even though there are some studies on testing of the
perception and machine learning components of ADSs [26],
[37], which focus more on generating different scenes rather
than dynamic scenarios, there are no systematic methods
for testing a whole ADS in the literature. Testing on a
whole ADS needs to consider different motion behaviours
of other agents, such as NPC vehicles around. Hence, we
only compare our GA-based fuzzing algorithms with the
random method.

6.1 Expressiveness of AVUnit
Currently, the concept of Operational Design Domain
(ODD) is widely applied by tech companies and automotive
manufacturers, such as Waymo, Ford, and TuSimple, to indi-
cate where ADSs can operate safely [38]. An ODD specifies
what operating parameters should be managed in a scenario
for AVs. According to the technical report from the U.S. De-
partment of Transportation [36] and the SAE J3016 [39], the
ODDs can be divided into physical infrastructure (e.g., road
type and geometry), operational constraints (e.g., speed
limits, traffic conditions), agents (e.g., roadway users like
vehicles and pedestrians, and non-roadway users like ob-
stacles), connectivity (e.g., traffic density), environmental
conditions (e.g., weather, illumination), and zones [36]. Fo-
cusing on ADS testing, they can be further classified into
two categories: fixed ODDs and flexible ODDs. Fixed ODDs,
such as the physical infrastructure, operational constraints,
and zones, rely on the maps that an ADS is running on

and cannot be changed by users. They are achieved in
AVUnit by loading a required map. Flexible ODDs, such
as agents and environmental conditions, can be customized
by users. In AVUnit, users can describe different environ-
ments, stationary obstacles, NPC vehicles, and pedestrians,
together with their motion behaviour. In detail, using the
statement Environment(time, weather), AVUnit can
define different environmental conditions; for NPC vehicles
and pedestrians, AVUnit describes their behaviours in a
decoupled way by stating each agent’s motion in terms of
uniform motion or a detailed trajectory. Hence, AVUnit also
supports flexible ODDs.

Moreover, AVUnit supports scene elements that can be
described by other languages, such as OpenScenario [6],
GeoScenario [7], Scenic [8], SceML [9], Paracosm [10] and
M-SDL [11]. A detailed comparison of these languages is
given in Table 3. From the table, we can find that one of the
main characteristics of AVUnit is that it supports the ability
to perform mutations directly on the variables defined in it.

AVUnit can describe various specifications with respect
to perception error, distance, speed, velocity, and accel-
eration. In the sequel, we list some typical specifications
supported by AVUnit. As the examples illustrated in Sec-
tion 4.1, AVUnit can define different assertions for collision
avoidance and perception accuracy. Here we illustrate an-
other three kinds of assertions. The first one is for task
achievement. With AVSpec, we can describe different kinds
of task achievements, e.g., reaching the destination with or
without time budgets, which are given as follows:

1 trace |= F[0,T] (dis(ego_state, target_position)<=
rho);

2 trace |= F (dis(ego_state, target_position)<=rho);

where target_position is the destination of the ego
vehicle defined in SCENEST, T is the time budget for the ego
vehicle’s motion, and rho is a predefined error tolerance.
The second one is the assertions related to traffic rules. For
example, the ego vehicle should stop before an intersection
when the corresponding traffic light is red. It can be writ-
ten as:

1 light_id = trace[truth][traffic][light][id];
2 light_color = trace[truth][traffic][light][color];
3 light_offset = trace[truth][traffic][light][offset];
4 dis_light = dis(ego_state, light_id);
5 trace |= G ((light_color==RED & light_offset<=

dis_light<=light_offset+rho -> (spd(ego_state,
0)==0 U light_color==GREEN));

where the status of a traffic light in a scene is described
by its ID (light_id), color (light_color), and distance
to the other side of the intersection (light_offset), the
distance between the ego vehicle and the light is described
by dis(ego_state, light_id), and rho is a prede-
fined threshold. The third one is for performance-related
assertion. Sometimes, to guarantee motion smoothness and
passenger comfort, a sharp changing on the motion is not
encouraged. Hence, we can declare a performance assertion
as follows:

1 acc_dis = acc(ego_state, (0, 0, 0));
2 trace |= G acc_dis<=threshold;

where threshold is a predefined requirement.
We acknowledge that incorporating triggers can enhance

predictability and expedite testing [40]. However, adding

https://avunit2021.github.io/

13

TABLE 3: Comparison of Main Features of AVUnit with Other DSLs

Feature AVUnit Scenic OpenScenario GeoScenario SceML Paracosm M-SDL
File Format script script XML XML graph script script

Time
√ √ √ √

−
√ √

Weather
√ √ √ √

− p
√

Vehicle Model
√

×
√ √

p
√ √

Position
Coordinate

Position
√ √ √

p −
√

×
Distance
Position

√
×

√
× ×

√ √

Heading
absolute value

√ √ √ √
× −

√

agent-relative
value

√ √ √
× × −

√

lane-relative
value

√ √ √
× × −

√

Motion
Behaviour

Format individual
trajectory

simulator-
related event

triggers
action + trigger

position profile
+ speed profile

+ reactive
triggers

abstract
behaviour

reactive
event

trigger

reactive
event

trigger

Coupled vs.
Decoupled decoupled coupled coupled coupled coupled coupled coupled

Simulator
Independence

√
×

√ √
×

√ √

Mutation
Supported

√
× × × × × ×

Customized Oracles
√

× × × × p
√

√
: supported; ×: not supported; −: unknown; p: partially support.

triggers to the description may limit certain agent behaviors,
thereby making it impossible to depict certain specific sce-
narios. Hence, in this work, we focus on the design the auto-
matic ADS testing framework. In the future, this framework
can be extended to integrate triggers as an option in the
scenario description language, and facilitate trigger-based
testing approaches to generating critical scenarios.

6.2 Effectiveness of AVUnit

Based on our experiments, we find that there are rendering
delays in LGSVL during the generation of LiDAR’s point
clouds, which means the current point cloud of an object is
its previous state rather than the current one. In this case,
the ADS cannot make correct decisions, and collisions occur
easily. Hence, in our experiments, we bypass the perception
module and use the ground truth data provided by LGSVL’s
modular testing feature.

According to the target scenario described in each
SCENEST script, we generate an initial population whose size
is 20, and the number of generations is 25, resulting in 520
test cases. We run the algorithm 5 times for each scenario.
Moreover, to avoid the influence of execution uncertainties
of the computer, we repeat the violated test cases several
times to confirm that the failures are reproducible. For each
violated test case, we analyse its execution and identify
the unreasonable behaviour during the motion of the ego
vehicle. However, it is not a root cause analysis, which is a
challenging task due to the complexity of the ADS. It will
be our future work. In the sequel, we describe the issues
discovered in our experiments. Note that there are issues
caused by other aspects, such as the simulator (e.g., loss
of traffic light signals) and HD map (too large lane gaps).
Hence, we manually check the failure test cases and identify
the following 19 issues caused by Apollo.
Issues in Intersection Crossing. First, we describe the issues
discovered during the crossing of intersections.

1) Wrong overtaking action. When an NPC vehicle is
passing through the same intersection, Apollo predicts
that the ego vehicle can pass through the intersection,
so it generates an overtaking action, and the ego vehicle
does not decelerate, resulting in a collision. Actually, the
ego vehicle should slow down its motion and give way
to the NPC vehicle.

2) No motion prediction of low-speed vehicles. Apollo
regards a low-speed NPC vehicle as a stationary one
and has no motion prediction. Hence, Apollo cannot
make a decision to avoid collisions with the vehicle near
its junction lane, resulting in a collision.

3) Too soft braking in emergencies. When there is an NPC
vehicle passing across the ego vehicle’s junction lane
near the ego vehicle, Apollo does not take a 100% brake
and causes a collision with the NPC vehicle. If Apollo
applied more hard braking, the ego vehicle would stop
before collisions.

4) Collision with a temporary stopping vehicle in an inter-
section due to aggressive motion decisions. Apollo first
stops the ego vehicle safely when it detects an NPC
vehicle moving to its junction lane. However, the NPC
vehicle may stop temporarily since its lane is occupied
by another NPC vehicle. Even though the stopping time
is short, Apollo restarts the ego vehicle immediately
and causes a collision with the NPC vehicle.

5) Rear-end collision with a large vehicle (e.g., SchoolBus
and BoxTruck). When a large NPC vehicle makes a
sharp turn, it may occupy a part of the adjacent lane.
However, Apollo does not detect such a vehicle and
keeps moving forward, resulting in a rear-end collision.

6) Wrong motion prediction of NPC vehicles. Apollo ap-
plies deep models to predict the motion of other agents.
When there are multiple paths for an NPC vehicle, the
prediction module may incorrectly predict the vehicle’s
motion, which would not cause collisions with the
ego vehicle. Hence, the ego vehicle keeps crossing the

14

intersection and collides with the NPC vehicle.
7) Blocked in an intersection due to accidents. Apollo can-

not detect accidents in an intersection and controls the
ego vehicle moving into the intersection. As a result, the
ego vehicle is blocked in the intersection and then stops
other vehicles. Hence, the intersection is completely
jammed.

Issues in Lane Changing. Another common action for
vehicles is lane-changing behaviours, including cut-in. Note
that overtaking can be decomposed into lane changing,
which starts the overtaking task, and cut-in, which aims to
complete the overtaking task. In the sequel, we describe the
lane-changing related issues discovered in Apollo.

8) No deceleration to wait for lane changing or cut-in.
Since other vehicles are moving on the target lane
during lane changing, the ego vehicle cannot perform
lane changing directly. Instead, it then follows the NPC
vehicles, rather than slow down to wait for a long
distance to perform lane changing, failing to reach the
destination.

9) Obstacles ahead of the destination blocking the ego
vehicle. Due to the fixed configurations, the ego vehicle
stops before the destination when there is a stationary
vehicle ahead of the destination, even though it is safe
enough for the ego vehicle to reach the destination.

10) Lane changing or overtaking terminated halfway. When
the ego vehicle detects a slow-speed NPC vehicle on the
target lane, the ego vehicle terminates lane changing
and switches to following, resulting in failing to arrive
at the destination. In these situations, the ego vehicle is
expected to continue its current lane-changing action.

11) Stuck during lane changing or overtaking. When the
ego vehicle performs a sharp turn for lane changing
or overtaking, it is forever stuck between two adjacent
lanes.

12) Aggressive lane following during lane changing. Before
performing lane changing, the ego vehicle first per-
forms lane following. However, the ego vehicle follows
the NPC vehicle ahead too aggressively such that when
the NPC vehicle stops, the ego vehicle moves too close
to perform lane changing. Hence, the ego vehicle stops
forever.

13) Performing lane changing or overtaking wrongly. The
ego vehicle starts lane changing or overtaking too late
such that the ego vehicle cannot finish lane changing or
overtaking successfully but blocks the adjacent lane.

14) No lane changing before an intersection when the ego
vehicle is required to go through an intersection. Apollo
prefers lane following and cannot perform lane chang-
ing before crossing an intersection. Hence, when the
destination is near the intersection or an NPC vehicle
is stopping near the intersection, the ego vehicle cannot
perform lane changing or overtaking after crossing the
intersection, resulting in task failures.

15) Performing cut-in wrongly. Apollo selects the wrong
position, where there is an NPC vehicle, for cut-in to
complete overtaking actions, which will stop the ego
vehicle or cause collisions.

16) Cut-in terminated halfway and a new overtaking action
restarted. During the end of overtaking, the ego vehicle

TABLE 4: Issue Distribution in Scenarios

Scenario Issues
Alg. 1 Rand

S1 (1)–(5) (1), (4), (5)
S2 (2) ∅
S3 (2), (3), (6), (7) (6), (7)
S4 ∅ ∅
S5 (7) ∅
S6 (8), (10), (15) (8), (10)
S7 (9)–(14), (19) (9), (12), (14)
S8 (10)–(13), (15)–(19) (12), (13), (15), (19)

takes cut-in to complete overtaking. When it detects
another vehicle ahead, the ego vehicle terminated cut-in
and restarts to overtake. However, the current position
is close to the destination, and the ego vehicle cannot
finish overtaking successfully, resulting in task failures.
In this case, the ego vehicle is expected to continue cut-
in and reach the destination successfully.

17) Wrong direction to perform overtaking. In this issue,
the ego vehicle executes overtaking by moving along
the lane with an opposite lane direction, while the
adjacent lane with the same lane direction is empty.
Such motion is forbidden by traffic laws.

The above issues are safety-related and discovered by
the design test oracles. During our experiments, we also
identify some performance issues that are not because they
are encoded into the test oracles.
18) Performing overtaking failed and returning to lane

following. Sometimes, the ego vehicle first tries to
overtake and then goes back to perform lane following.
Even though such behaviour may not cause collisions
or task failures, it can block the vehicles moving along
the adjacent lane temporally and degrade the through-
put of the whole transport system.

19) No overtaking when there is a slow vehicle ahead. The
ego vehicle follows a slow-speed (<0.5m/s) vehicle and
does not perform overtaking, which takes a long time
to complete the motion task and degrades performance.

For example, as described in the last issue, if the ego
vehicle does not overtake a slow NPC vehicle ahead, it may
not complete the motion tasks in time and cause traffic jams.
A well-designed ADS is expected to perform overtaking in
such a scenario. It is worth noting that different scenarios
may show different issues. The distribution of these issues
in the scenarios is shown in Table 4. The videos for these
failures can be found at https://avunit2021.github.io/.

6.3 Efficiency of AVUnit

Currently, no existing approaches support all the features
required to run these experiments. For example, the authors
in [41] proposed a search-based method for ADS collision
avoidance testing. However, their open-source code requires
significant efforts on configuration and customization to
execute our target scenarios on the simulation platform
(which makes it practically infeasible to compare with).
Hence, we apply the random fuzzing approach as a baseline
comparison with our approach. For each scenario, we repeat

https://avunit2021.github.io/

15

the random method 5 times and generate 520 test cases for
each run. We compare the performance of the two methods
from two aspects: the number of failure test cases and dis-
covered issues, and the experimental time. The experimental
time includes generation time and execution time, where the
former is the time to generate a new scenario and the latter is
the time to run the scenario in the simulation environment.
Analysis of Failure-Inducing Algorithm. First, we compare
our failure-inducing algorithm (i.e., Algorithm 1), denoted
as Alg. 1, with the random method in terms of the numbers
of violated test cases, failed test cases, and discovered issues,
and the experimental time. Here a violated test case is a test
case that violates the defined assertion φ, which may not
cause system failure but due to the infeasibility of the test
case (e.g., the destination of the ego vehicle is occupied,
the intersection is blocked due to accidents among NPC
vehicles, etc.), while a failed test case is a test case that
triggers ADS’s failures. Note that to identify the failed test
cases, we currently confirm the violated test cases manually.
Table 5 shows the number of violated and failed test cases
for each execution round of the eight general scenarios.
Fig. 7 presents the total number of discovered issues in each
general scenario, and the detailed issues are listed in Table 4.
The results show that Algorithm 1 can identify a more
diverse set of failure cases and cover all issues discovered
by the random. Table 6 displays the generation time and
execution time. The results show that there are no significant
differences between the two methods in terms of generation
time. Even though some invalid violated test cases may
affect the execution of Algorithm 1, the results still show
the efficiency of our method.

We also compare the reported issues by AV-Fuzzer and
ComOpt in their respective publications [41] and [42]. In
[41], the authors proposed a method that combines GA-
based global search and local fuzzing search to discover
five types of issues related to wrong motion prediction of
NPC vehicles (similar to Issue (6)), incorrect cut-in behavior
(similar to Issue (15)), and overly soft braking (similar to Is-
sue (3)). However, the trajectories that led to the discovered
issues are different. For example, AV-Fuzzer reports that the
ADS cannot predict the cut-in behavior of an NPC vehicle,
while in our paper, we found that the ADS cannot predict
the motion direction of an NPC vehicle in an intersection.
This observation motivates us to explore more diverse sce-
narios and improve our mutation operators in the future. In
[42], the authors considered different value combinations of
parameters to describe a scenario and reported 12 classes of
failure test cases. After manually reviewing the videos, we
found that some issues were caused by the simulator (such
as loss of signal of a traffic light by the simulator) and map
issues (such as lanes being too far apart to allow for a lane
change), and we were able to identify issues such as failure
at sharp turns, oscillating motion (similar to Issues (16)), and
aggressive lane changing (similar to Issue (15)). We found
that our method can discover more issues but misses the
sharp turn issue, which is dependent on the map structure.
This observation encourages us to run our algorithms on
more diverse map regions.
Analysis of Failure-Coverage Fuzzing Algorithm. The
comparison of the failure coverage of our GA-based fuzzing
algorithm (i.e., Algorithm 2, denoted as Alg. 2) and the

Fig. 7: Numbers of issues discovered in different scenarios.

random algorithm is shown in Table 7, where the second
column is the total number of failure predicates in the
assertion, and the last five columns are the covered failure
predicates in each run. The results show that our algorithm
outperforms the random method as our method covers
more failure predicates in each scenario. Note that in Table
7, we do not distinguish invalid violated scenarios as our
algorithm takes the failure predicates covered by both valid
and invalid violated scenarios. Table 6 shows the compar-
ison of experimental time. From the results, we can find
Algorithm 2 takes shorter time to generate a new test case
on average. The reason is that Algorithm 2 spends less time
in the selection process (Lines 18-24 in Algorithm 2).

6.4 Threats to Generality and Validity

Due to the nature of simulation-based ADS testing, AVUnit
suffers some threats to generality and validity.

6.4.1 Threats to Generality

AVUnit is designed to be independent of simulation en-
vironments. However, we have to implement the corre-
sponding simulator and ADS adapters and bridges if we
want to use some specific simulators and ADSs, as different
simulators and ADSs release different APIs and messages.
On the one hand, as all elements defined in AVUnit (e.g.,
weather, time, and states of NPC vehicles and pedestri-
ans) are general and should be supported by most of the
current simulators and ADSs, the implementation of such
adapters does not require much effort. On the other hand,
the availability of the connection between a simulator and
an ADS will limit the selection of simulation environments,
which in turn will limit the application of AVUnit. For
example, the simulator LGSVL provides bridges for both
Apollo and Autoware, while CARLA only provides a bridge
for CARLA. Therefore, if we want to set up a simulation
environment with CARLA and Apollo, we must implement
the corresponding bridge. However, it is out of the scope of
AVUnit.

16

TABLE 5: Numbers of Violated Test Cases and Test Cases Causing Failures

Scenario Method # Failed/Violated Test Cases (out of 520 Test Cases)
R1 R2 R3 R4 R5

S1 Alg. 1 59/59 50/55 57/65 48/81 66/108
Rand 3/7 2/2 5/5 13/13 5/6

S2 Alg. 1 1 /1 0/0 3/4 0/0 0/0
Rand 0/0 0/0 0/0 0/0 0/0

S3 Alg. 1 57/57 48/48 69/69 54/54 62/62
Rand 23/23 24/24 6/6 16/27 21/22

S4 Alg. 1 0/0 0/0 0/0 0/0 0/0
Rand 0/0 0/0 0/0 0/0 0/0

S5 Alg. 1 19/20 14/45 6/39 4/37 29/100
Rand 0/0 0/3 0/0 0/1 0/1

S6 Alg. 1 133/161 234/253 175/227 179/259 194/228
Rand 18/27 16/26 17/31 23/34 12/17

S7 Alg. 1 116/156 149/316 131/392 66/125 99/135
Rand 49/49 51/87 52/72 52/78 49/65

S8 Alg. 1 131/192 122/199 87/193 125/175 79/128
Rand 58/172 49/160 65/165 66/174 52/160

TABLE 6: Average Generation and Execution Time for Each
Scenario

Scenario Time Alg. 1 Random Alg. 2

S1 Generation 0.34 0.3 0.19
Execution 44.9 25.5 37.6

S2 Generation 0.32 0.23 0.18
Execution 49.7 59.1 51.4

S3 Generation 0.34 0.29 0.19
Execution 41.0 36.7 34.9

S4 Generation 0.32 0.29 0.19
Execution 43.3 42.0 39.1

S5 Generation 0.35 0.31 0.2
Execution 83.5 63.0 63.8

S6 Generation 0.31 0.29 0.18
Execution 47.0 29.6 41.1

S7 Generation 0.3 0.29 0.19
Execution 83.7 57.9 69.5

S8 Generation 0.3 0.28 0.17
Execution 98.6 99.0 96.1

TABLE 7: Failure Coverage of Different Methods

Scenario # predicates Method R1 R2 R3 R4 R5

S1 31 Alg. 2 9 9 8 9 9
Rand 3 1 4 6 4

S2 31 Alg. 2 2 1 1 2 3
Rand 0 0 0 0 0

S3 63 Alg. 2 3 4 5 4 6
Rand 3 2 2 2 3

S4 31 Alg. 2 1 1 1 1 2
Rand 0 0 0 0 0

S5 255 Alg. 2 5 4 4 5 7
Rand 0 1 0 1 1

S6 63 Alg. 2 14 10 9 13 13
Rand 4 3 3 4 3

S7 63 Alg. 2 7 9 6 10 6
Rand 3 4 2 3 1

S8 15 Alg. 2 9 10 11 11 11
Rand 4 5 5 7 6

6.4.2 Threats to Validity
External threats are mainly caused by simulators, HD maps,
and execution computers. First, due to its design purposes,
sometimes a simulator may not support all the features
described in AVUnit. For example, we observed that the
waypoint controller used in LGSVL caused NPC vehicles to
move along straight lines to reach the next waypoints, which
sometimes resulted in vehicles moving onto sidewalks in-
stead of staying on the appropriate lane segments. To ad-

dress this limitation, we modified the waypoint controller
by adding additional waypoints on the lanes connecting
any two consecutive waypoints. These new waypoints were
placed such that they maintained a constant distance from
one another, ensuring that NPC vehicles would always
move along the lanes and stay on the correct path. Second,
the quality of the HD maps will affect the evaluation of
AVUnit. Currently, many lane gaps in the San Francisco
map are not exact and too large for Apollo to perform
lane changes. It results in failures for scenarios where lane
changes are necessary. To mitigate this problem, we first
check where the ego vehicle can perform a lane change
between two lanes before creating scenarios in a region.
Third, some modules of Apollo may suffer from high delays
after long-time execution, which may result in the wrong
execution of a scenario and cause AVUnit to conclude false-
positive results. We implemented some solutions to mitigate
this threat: (1) We used some high-performance computers
to conduct our experiments; (2) During our experiments, we
restarted the modules periodically to reduce such delays;
(3) We replayed the failure scenarios several times to ensure
that such failures can be reproduced.

The internal threats are generated by invalid failure
test cases and the number of general scenarios. First, as
AVUnit identifies violated test cases based on the last state
of the ego vehicle, there may be failures caused by other
reasons, such as simulator issues, infeasible scenarios, and
NPC vehicles. They may affect the GA process of AVUnit.
However, based on our experimental results, such effects
do not cause serious consequences. In the future, we will
design methods to filter out invalid failure test cases, which
is a challenging task due to the unpredictable and complex
executions of the scenarios. Second, we observed that the
types of violations detected by our method are influenced
by the topology and geometry characteristics of the map. In
our experiments, we evaluated our method on a single map
and instantiated each general scenario in a single region of
that map. While our experimental results demonstrate the
effectiveness of our method under these settings, we plan to
test our method on more diverse map regions and maps to
further validate its performance.

17

7 RELATED WORK

Scenario Description Languages. There are some scenario
description languages proposed to formulate complex sce-
narios [5]–[11].

CommonRoad [5] provides composable benchmarks for
motion planning on roads, containing vehicle models, cost
functions, and scenarios. Scenarios are described by an
XML file, which includes the road network in terms of
lanelets [43], static and dynamic obstacles, and the plan-
ning task of the ego vehicle. However, built on top of the
predefined elements in the benchmarks, CommonRoad is
hard to describe various simulation applications out of the
benchmarks.

OpenScenario [6] is a standard, managed by the Asso-
ciation for Standardization of Automation and Measuring
Systems, to describe autonomous driving scenarios. They
define concepts such as driver behaviour, traffic, weather,
environmental events, and other features, to construct sce-
narios, which are organized in an XML file format. The
scenarios are described in terms of stories, which allow
users to organize scenario elements into a higher-level hi-
erarchy, but this can still be quite overwhelming. Besides,
OpenScenario allows users to formulate the ADS behaviour
in the scenario, which limits—even forbids—its applications
to different ADSs.

GeoScenario [7] is a formal language designed accord-
ing to OpenScenario. It has two basic concepts: Nodes
and Ways. GeoScenario can be used to describe different
agents in a scenario, such as vehicles and pedestrians, and
their paths. GeoScenario focuses more on the planning and
control modules, so it does not include the description of
environmental elements, such as weather and time of a day.
Hence, it can be applied only for the testing of planning
and control parts of an ADS. Moreover, to describe a path,
GeoScenario needs to define a set of nodes, which some-
times is overwhelming.

Scenic [8] is a probabilistic programming language that
is primarily designed to generate a set of scenes for analysis
of the ADS’s perception module. Later, the authors extend
it to express scenarios by adding behaviours for dynamic
agents. A behaviour is a sequence of actions provided by a
simulator, and users have to define a function to describe
the transitions among the actions. Hence, the description
of agent behaviours relies on simulators and is not user-
friendly.

SceML [9] proposes a graphical scenario modeling lan-
guage, where a scenario is described by a set of maneuver,
condition, joint nodes. Each node is associated with a set of
parameters to describe concrete scenarios. However, deter-
mining the nodes and their parameters is still a challenging
task. Paracosm [10] provides a programmable language to
describe scenarios where reactive event triggers define an
object’s dynamics. CRISCE analyzes the accident sketches
and generates driving simulations that accurately reproduce
the represented car crashes in a virtualization manner [44].

Unlike existing DSLs that mainly focus on describing
complex scenarios, SCENEST prioritizes testing needs. It
models each agent independently for the initialization of
scenarios and ensures the ability to create new scenarios.
Besides, the existing DSLs cannot customize oracles for ADS

testing. In this paper, aiming to provide a platform for auto-
matic ADS testing, we propose AVUnit to initialize scenarios
following a description template, while leaving AVUnit to
generate critical scenarios with customized specifications.
Scenario-Based ADS Testing. The main target for ADS
testing is to evaluate whether an ADS can make proper de-
cisions for different scenarios. However, due to the complex
environments, a scenario consists of various configurations,
resulting in the exponential increase of concrete scenarios
since we need to parameterize all possible configurations
to generate concrete scenarios. To reduce the number of
scenarios, researchers focus on generating critical scenarios:
in particular, the scenarios that can cause collisions.

The first group of methods is to generate critical sce-
narios from traffic accident reports [12]–[16] and real-world
driving data [17]–[20]. For example, some methods have
been proposed to extract collision scenarios from off-the-
shelf datasets such as crash reports and human driving
data [14], [15], [19]. Using deep learning technologies, we
can increase data diversity and accelerate the generation
of critical scenarios from existing datasets [17] or dashcam
crash videos [12]. However, in these datasets, crash cases are
rare, and many of them are highly similar, so it is costly to
generate sufficient and diverse testing scenarios [20].

The second group of methods for critical scenario gen-
eration is based on ADSs’ abstract models [21]–[25]. With
the system models or surrogate models, one can generate
critical scenarios via model evaluation using different tech-
nologies, such as optimization methods [21], [22]. However,
in most cases, it is not easy to obtain the exact models
of ADSs due to their complexity and confidentiality, while
the surrogate models sometimes cannot describe the ADSs
under test exactly.

Recently, simulation-based black-box testing technolo-
gies have been proposed to generate critical scenarios via the
execution of an existing ADS [26], [27], [32], [41], [42], [45]–
[47]. For example, Tuncali et al propose a framework Sim-
ATAV to evaluate DNN-based ADSs with some predefined
STL-based requirements [27]. The authors in [41] proposed
a Genetic Algorithm-based method for ADS testing, where
critical scenarios are generated by mutating the maneuvers
of NPC vehicles, guided by the minimal feasible distance
between the ego vehicle and other objects. In [42], the
authors propose a method to generate diverse scenarios in
terms of the value combinations of parameters, which, how-
ever, cannot generate critical scenarios efficiently. All these
existing testing technologies focus on weak oracles and
mutation operators without considering testing coverage. In
this work, we propose AVSpec to customize specifications
for ADS testing, and feedback-guided fuzzing algorithms to
automatically generate failure scenarios with rich mutation
operators and measure test sufficiency with different cover-
age measures (i.e., testing time and failure coverage).

8 CONCLUSION

In this paper, we proposed a new framework, AVUnit, for
autonomous vehicle testing. AVUnit is equipped with two
languages and two fuzzing algorithms. First, we proposed
SCENEST to describe scenarios and AVSpec to describe dif-
ferent specifications to be monitored during the execution

18

of the scenarios. Second, we proposed a failure-inducing
fuzzing algorithm to search for scenarios violating the de-
fined assertions and a failure-coverage fuzzing algorithm
to search for scenarios that can violate different predicates
in the assertions. We implemented and evaluated AVUnit
on LGSVL+Apollo, discovering 19 issues in Apollo, which
indicate that the current open-source version of Apollo does
not work well in complex intersections and lane changing
maneuvers.

In the future, we will evaluate AVUnit on more regions
in the San Francisco map and other maps, such as those
generated by [48], [49]. We will integrate AVUnit with more
simulators and ADSs and test more specifications of ADSs.
We also design and implement more methods in AVUnit to
generate critical scenarios; for example, we may investigate
how to use the change rate of robustness to generate failure
test cases. Finally, we will investigate the methods for root
cause analysis of the discovered issues.

ACKNOWLEDGMENT

We would like to thank the editors and the reviewers for
improving this manuscript. This work was supported in
part by the Ministry of Education, Singapore under its
Academic Research Fund Tier 3 (Award ID: MOET32020-
0004) and Academic Research Fund Tier 2 (Grant No. MOE-
T2EP20120-0004), the NRF Investigatorship (NRF-NRFI06-
2020-0001), and the National Natural Science Foundation
of China (No. 62032010). Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of the
Ministry of Education, Singapore.

REFERENCES
[1] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for develop-

ment, test and validation of automated vehicles,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), 2018, pp. 1821–1827.

[2] C. Neurohr, L. Westhofen, T. Henning, T. de Graaff, E. Möhlmann,
and E. Böde, “Fundamental considerations around scenario-based
testing for automated driving,” in 2020 IEEE Intelligent Vehicles
Symposium (IV), 2020, pp. 121–127.

[3] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta et al., “LGSVL simulator: A
high fidelity simulator for autonomous driving,” in 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC),
2020, pp. 1–6.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conference on
Robot Learning, 2017, pp. 1–16.

[5] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Com-
posable benchmarks for motion planning on roads,” in 2017 IEEE
Intelligent Vehicles Symposium (IV), 2017, pp. 719–726.

[6] Association for Standardization of Automation and Measuring
Systems (ASAM). (2020) ASAM OpenSCENARIO. [Online].
Available: https://www.asam.net/standards/detail/openscenar
io/

[7] R. Queiroz, T. Berger, and K. Czarnecki, “GeoScenario: An open
DSL for autonomous driving scenario representation,” in 2019
IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 287–294.

[8] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario
specification and scene generation,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 63–78.

[9] B. Schütt, T. Braun, S. Otten, and E. Sax, “SceML: A graphical
modeling framework for scenario-based testing of autonomous
vehicles,” in Proceedings of the 23rd ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, 2020,
pp. 114–120.

[10] R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey,
“Paracosm: A test framework for autonomous driving simula-
tions,” in International Conference on Fundamental Approaches to
Software Engineering. Springer, Cham, 2021, pp. 172–195.

[11] Foretellix Ltd, “Measurable Scenario Description Language,” http
s://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL L
RM OS.pdf, Jan. 2020.

[12] S. K. Bashetty, H. B. Amor, and G. Fainekos, “DeepCrashTest:
Turning dashcam videos into virtual crash tests for automated
driving systems,” in 2020 IEEE International Conference on Robotics
and Automation, ICRA, Paris, France, 2020, pp. 11 353–11 360.

[13] A. Gambi, T. Huynh, and G. Fraser, “Generating effective test cases
for self-driving cars from police reports,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
257–267.

[14] W. G. Najm, S. Toma, J. Brewer et al., “Depiction of priority
light-vehicle pre-crash scenarios for safety applications based
on vehicle-to-vehicle communications,” National Highway Traffic
Safety Administration, U.S. Department of Transportation, Wash-
ington, DC, Tech. Rep. DOT HS 811 732, Apr. 2013.

[15] P. Nitsche, P. Thomas, R. Stuetz, and R. Welsh, “Pre-crash scenarios
at road junctions: A clustering method for car crash data,” Accident
Analysis & Prevention, vol. 107, pp. 137–151, 2017.

[16] F. Hauer, T. Schmidt, B. Holzmüller, and A. Pretschner, “Did
we test all scenarios for automated and autonomous driving
systems?” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), 2019, pp. 2950–2955.

[17] W. Ding, M. Xu, and D. Zhao, “CMTS: A conditional multi-
ple trajectory synthesizer for generating safety-critical driving
scenarios,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 4314–4321.

[18] C. Roesener, F. Fahrenkrog, A. Uhlig, and L. Eckstein, “A scenario-
based assessment approach for automated driving by using time
series classification of human-driving behaviour,” in 2016 IEEE
19th international conference on intelligent transportation systems
(ITSC), 2016, pp. 1360–1365.

[19] J.-P. Paardekooper, S. Montfort, J. Manders, J. Goos, E. d. Gelder,
O. Camp, O. Bracquemond, and G. Thiolon, “Automatic identi-
fication of critical scenarios in a public dataset of 6000 km of
public-road driving,” in 26th International Technical Conference on
the Enhanced Safety of Vehicles (ESV), 2019.

[20] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa, and
C. S. Pan, “Accelerated evaluation of automated vehicles safety in
lane-change scenarios based on importance sampling techniques,”
IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 3,
pp. 595–607, 2017.

[21] M. Althoff and S. Lutz, “Automatic generation of safety-critical
test scenarios for collision avoidance of road vehicles,” in 2018
IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 1326–1333.

[22] M. Klischat and M. Althoff, “Generating critical test scenarios for
automated vehicles with evolutionary algorithms,” in 2019 IEEE
Intelligent Vehicles Symposium (IV), 2019, pp. 2352–2358.

[23] H. Beglerovic, M. Stolz, and M. Horn, “Testing of autonomous
vehicles using surrogate models and stochastic optimization,” in
2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), 2017, pp. 1–6.

[24] G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated
generation of diverse and challenging scenarios for test and evalu-
ation of autonomous vehicles,” in 2017 IEEE international conference
on robotics and automation (ICRA), 2017, pp. 1443–1450.

[25] G. E. Mullins, A. G. Dress, P. G. Stankiewicz, J. D. Appler, and S. K.
Gupta, “Accelerated testing and evaluation of autonomous vehi-
cles via imitation learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018, pp. 1–7.

[26] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “VerifAI: A toolkit for
the formal design and analysis of artificial intelligence-based
systems,” in International Conference on Computer Aided Verification,
2019, pp. 432–442.

[27] C. E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, and J. Kapinski,
“Requirements-driven test generation for autonomous vehicles
with machine learning components,” IEEE Transactions on Intel-
ligent Vehicles, vol. 5, no. 2, pp. 265–280, 2019.

[28] Baidu, “Apollo 6.0,” https://github.com/ApolloAuto/apollo/rel
eases/tag/v6.0.0, 2019, online; accessed Oct 2020.

https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_LRM_OS.pdf
https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_LRM_OS.pdf
https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_LRM_OS.pdf
https://github.com/ApolloAuto/apollo/releases/tag/v6.0.0
https://github.com/ApolloAuto/apollo/releases/tag/v6.0.0

19

[29] O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, 2004, pp. 152–166.

[30] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and
S. A. Seshia, “Robust online monitoring of signal temporal logic,”
Formal Methods in System Design, vol. 51, no. 1, pp. 5–30, 2017.

[31] D. Ničković and T. Yamaguchi, “RTAMT: Online robustness moni-
tors from STL,” in International Symposium on Automated Technology
for Verification and Analysis, 2020, pp. 564–571.

[32] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-
based adversarial test generation for autonomous vehicles with
machine learning components,” in 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2018, pp. 1555–1562.

[33] C. E. Tuncali, J. Kapinski, H. Ito, and J. V. Deshmukh, “Reason-
ing about safety of learning-enabled components in autonomous
cyber-physical systems,” in Proceedings of the 55th Annual Design
Automation Conference, 2018, pp. 1–6.

[34] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The
fuzzing book,” 2019.

[35] P. Arcaini, X.-Y. Zhang, and F. Ishikawa, “Targeting patterns of
driving characteristics in testing autonomous driving systems,”
in 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2021, pp. 295–305.

[36] E. Thorn, S. C. Kimmel, M. Chaka, B. A. Hamilton et al., “A frame-
work for automated driving system testable cases and scenarios,”
United States. Department of Transportation. National Highway
Traffic Safety, Tech. Rep., 2018.

[37] S. Wang and Z. Su, “Metamorphic object insertion for testing object
detection systems,” in 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2020, pp. 1053–1065.

[38] C. W. Lee, N. Nayeer, D. E. Garcia, A. Agrawal, and B. Liu,
“Identifying the operational design domain for an automated
driving system through assessed risk,” in 2020 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2020, pp. 1317–1322.

[39] Society of Automotive Engineers (SAE), “SAE J3016 – Taxonomy
and definitions for terms related to driving automation systems
for on-road motor vehicles,” 2018.

[40] A. Arrieta, S. Wang, U. Markiegi, G. Sagardui, and L. Etxeberria,
“Employing multi-objective search to enhance reactive test case
generation and prioritization for testing industrial cyber-physical
systems,” IEEE Transactions on Industrial Informatics, vol. 14, no. 3,
pp. 1055–1066, 2017.

[41] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “AV-Fuzzer: Finding safety violations in autonomous
driving systems,” in 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), 2020, pp. 25–36.

[42] C. Li, C.-H. Cheng, T. Sun, Y. Chen, and R. Yan, “ComOpT: Combi-
nation and optimization for testing autonomous driving systems,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 7738–7744.

[43] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings, 2014, pp. 420–425.

[44] A. Gambi, V. Nguyen, J. Ahmed, and G. Fraser, “Generating
critical driving scenarios from accident sketches,” in 2022 IEEE
International Conference On Artificial Intelligence Testing (AITest).
IEEE, 2022, pp. 95–102.

[45] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Generating
avoidable collision scenarios for testing autonomous driving sys-
tems,” in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), 2020, pp. 375–386.

[46] D. Kaufmann, L. Klampfl, F. Klück, M. Zimmermann, and J. Tao,
“Critical and challenging scenario generation based on automatic
action behavior sequence optimization: 2021 ieee autonomous
driving ai test challenge group 108,” in 2021 IEEE International
Conference on Artificial Intelligence Testing (AITest). IEEE, 2021, pp.
118–127.

[47] A. Piazzoni, J. Cherian, M. Azhar, J. Y. Yap, J. L. W. Shung, and
R. Vijay, “ViSTA: a framework for virtual scenario-based testing
of autonomous vehicles,” in 2021 IEEE International Conference on
Artificial Intelligence Testing (AITest). IEEE, 2021, pp. 143–150.

[48] Y. Tang, Y. Zhou, K. Yang, Z. Zhong, B. Ray, Y. Liu, P. Zhang,
and J. Chen, “Automatic map generation for autonomous driving
system testing,” arXiv preprint arXiv:2206.09357, 2022.

[49] Y. Zhou, G. Lin, Y. Tang, K. Yang, W. Jing, P. Zhang, J. Chen,
L. Gong, and Y. Liu, “FLYOVER: A model-driven method to

generate diverse highway interchanges for autonomous vehicle
testing,” arXiv preprint arXiv:2301.12738, 2023.

Yuan Zhou received his M.S. degree in com-
putational mathematics from Zhejiang Sci-Tech
University, Hangzhou, China, in March 2015 and
received his Ph.D. degree in computer science
from Nanyang Technological University, Singa-
pore, in June 2019. He is currently a Research
Fellow in School of Computer Science and En-
gineering at Nanyang Technological University,
Singapore, where he was awarded the Research
Scholarship Block Postdoctoral Fellow. His re-
search interests focus on the safety and security

of autonomous unmanned systems, including multi-robot systems and
autonomous vehicles.

Yang Sun is currently a Ph.D. candidate in the
School of Computing and Information System at
Singapore Management University, supervised
by Prof. SUN Jun. Yang’s research focuses on
evaluating and improving Autonomous Driving
Systems.

Yun Tang received his B.Eng (1st class, Dean’s
list) from the School of Electrical & Electronic
Engineering of Nanyang Technological Univer-
sity, Singapore in 2016 and his Ph.D. from the
School of Computer Science and Engineering
of Nanyang Technological University, Singapore
in 2023. He is currently a Research Fellow in
the Warwick Manufacturing Group, University of
Warwick, United Kingdom since February 2023.
His research interests focus on the safety verifi-
cation and validation framework of cyber physi-

cal systems, such as intelligent vehicles.

Yuqi Chen is an Assistant Professor at the
School of Information Science and Technology
at ShanghaiTech University. He received his
B.Sc. in computer science from the South China
University of Technology in 2015 and his Ph.D.
from the Singapore University of Technology and
Design in 2019. Before joining ShanghaiTech,
Yuqi was a Research Scientist in the System
Analysis and Verification group at Singapore
Management University. Yuqi’s research inter-
ests lie at the intersection of software engineer-

ing and security. He employs a range of techniques, including testing,
reverse engineering, program analysis, and formal methods, to develop
practical solutions for securing critical cyber-physical systems.

20

Jun Sun is currently a professor at Singapore
Management University (SMU). He received
Bachelor and PhD degrees in computing science
from National University of Singapore (NUS) in
2002 and 2006. In 2007, he received the pres-
tigious LEE KUAN YEW postdoctoral fellowship.
He has been a faculty member since 2010. He
was a visiting scholar at MIT from 2011-2012.
Jun’s research interests include software engi-
neering, formal methods, program analysis and
cyber-security. He is the co-founder of the PAT

model checker.

Christopher M. Poskitt is an Assistant Profes-
sor of Computer Science (Education) at Sin-
gapore Management University (SMU), where
he is a member of the System Analysis and
Verification Group. Prior to SMU, he held re-
search and teaching positions at ETH Zürich,
Switzerland, and the Singapore University of
Technology and Design. His research broadly
addresses the problem of engineering correct
and secure software/systems, towards which he
has co-developed techniques for testing/defend-

ing cyber-physical systems, tools for analysing concurrent program-
ming models, and logics for reasoning about the correctness of graph-
rewriting programs. His research interests span software engineering,
formal methods, cybersecurity, and computer science education.

Yang Liu graduated in 2005 with a Bachelor’s
degree in Computer Science from the National
University of Singapore (NUS). In 2010, he ob-
tained his Ph.D. in Computer Science and con-
tinued with his post doctoral work at NUS.

He is currently a Full Professor at the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His re-
search focuses on software engineering, secu-
rity, cyber-physical systems, and formal meth-
ods. Particularly, he specializes in software veri-

fication using model checking techniques, leading to the development of
a state-of-the-art model checker, Process Analysis Toolkit (PAT).

Dr. Yang received his Ph.D. from the University
of Pennsylvania. He is currently a professor and
director of the Turing Interdisciplinary Informa-
tion Science Research Center at Xi’an Jiaotong
University. He founded Synkrotron Inc, a startup
that focuses on autonomous driving software
systems. Dr. Yang has published more than 100
papers and received the ACM SIGSOFT Out-
standing Paper Award and the ACM TODAES
Best Journal Paper Award. He is the co-chair of
the IEEE Technical Committee on Electric and

Autonomous Vehicles.

	Introduction
	AVUnit: Background and Overview
	SCENEST: Specifying Dynamic Testing Scenarios
	Describing Scenes
	Describing Scenarios
	Semantics of SCENEST

	AVSpec: Specifying Correctness Properties
	Trajectories, Expressions, and Assertions
	Semantics

	Fuzzing
	Failure-Inducing Fuzzing
	Failure-Coverage Fuzzing

	Evaluation
	Expressiveness of AVUnit
	Effectiveness of AVUnit
	Efficiency of AVUnit
	Threats to Generality and Validity
	Threats to Generality
	Threats to Validity

	Related Work
	Conclusion
	References
	Biographies
	Yuan Zhou
	Yang Sun
	Yun Tang
	Yuqi Chen
	Jun Sun
	Christopher M. Poskitt
	Yang Liu
	Dr. Yang

