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Abstract

Cyber-physical systems (CPSs) in critical infrastructure face serious threats of attack, motivating research into a wide
variety of defence mechanisms such as those that monitor for violations of invariants, i.e. logical properties over sensor
and actuator states that should always be true. Many approaches for identifying invariants attempt to do so
automatically, typically using data logs, but these can miss valid system properties if relevant behaviours are not
well-represented in the data. Furthermore, as the CPS is already built, resolving any design flaws or weak points
identified through this process is costly. In this paper, we propose a systematic method for deriving invariants from an
analysis of a CPS design, based on principles of the axiomatic design methodology from design science. Our method
iteratively decomposes a high-level CPS design to identify sets of dependent design parameters (i.e. sensors and
actuators), allowing for invariants and invariant checkers to be derived in parallel to the implementation of the system.
We apply our method to the designs of two CPS testbeds, SWaT and WADI, deriving a suite of invariant checkers that
are able to detect a variety of single- and multi-stage attacks without any false positives. Finally, we reflect on the
strengths and weaknesses of our approach, how it can be complemented by other defence mechanisms, and how it
could help engineers to identify and resolve weak points in a design before the controllers of a CPS are implemented.
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Axiomatic design, Invariants, Anomaly detection, Supervised machine learning

Introduction

Cyber-physical systems (CPSs), in which software com-
ponents and physical processes are tightly integrated,
are prevalent in the automation of critical infrastruc-
ture, e.g. as the industrial control systems of power grids
and water purification plants. The potential impact of
compromising such systems has made them prime tar-
gets for attackers (Hassanzadeh et al. 2020; Leyden 2016).
In 2015, for example, the US Department of Homeland
Security reported 25 cybersecurity incidents in the water
sector and 46 in energy. Internationally, there have been
several well-publicised attacks in these sectors too (N.
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Al-Mhiqani et al. 2018). This situation has motivated
the development of multiple different countermeasures
for attack detection and prevention, including techniques
based on anomaly detection (Cheng et al. 2017; Goh et
al. 2017; Harada et al. 2017; Inoue et al. 2017; Pasqualetti
et al. 2011; Aggarwal et al. 2018; Aoudi et al. 2018; He
et al. 2019; Kravchik and Shabtai 2018; Lin et al. 2018;
Narayanan and Bobba 2018; Schneider and Boéttinger
2018; Carrasco and Wu 2019; Kim et al. 2019; Adepu et
al. 2020; Das et al. 2020; Giraldo et al. 2020; Schmidt et
al. 2020), fingerprinting (Ahmed et al. 2018; Ahmed et al.
2018; Formby et al. 2016; Gu et al. 2018; Kneib and Huth
2018; Yang et al. 2020), and fuzzing (Chen et al. 2019;
Chen et al. 2020; Wijaya et al. 2020).

Another popular approach is to monitor invariants of
a CPS (Adepu and Mathur 2016a; Adepu and Mathur
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2016b; Giraldo et al. 2018), i.e. properties that always hold
under normal operating conditions, and the violation of
which might suggest the presence of an attacker in the
system. Invariants are typically relations over the sensor
readings and actuator states of a system, a simple example
being that “if the tank level is above x, then pump p should
be ON” Given the complexity of CPSs in general, several
approaches (e.g. (Chen et al. 2016; Chen et al. 2018; Feng
et al. 2019)) aim to automatically derive such invariants
from sources of data, for instance, the time series of sen-
sor readings and actuator states logged by a supervisory
control and data acquisition system (SCADA). There is a
risk, however, that viable system behaviours are missed if
they are not represented in that data (e.g. rarely occur-
ring), and addressing any design flaws identified is costly
as the CPS is already built. Invariants can be derived man-
ually by system engineers (Cardenas et al. 2011; Adepu
and Mathur 2016a; Adepu and Mathur 2016b; Adepu
and Mathur 2021; Choi et al. 2018), but if done so in
an ad hoc manner, may also lead to properties being
missed.

In this paper, we propose a novel and systematic method
for deriving invariants and invariant checkers from a
design-level analysis of a CPS. In doing so, we aim
to: (1) find invariants implicit in the design but poorly
represented in datasets; (2) ensure that invariants can
be contextualised by the specific design iterations and
requirements they were derived from; and (3) further inte-
grate security concerns at the design stage, potentially
allowing weak points to be identified and fixed before a
CPS is built. Our method, inspired by the principles of
axiomatic design (Suh 2001)—a design science method-
ology for systems—iteratively decomposes a CPS design
to sets of dependent components that can be transformed
into invariants. We implement invariant checkers using
decision tree learning, and use them to monitor CPSs for
anomalies, i.e. violations of the invariant properties.

To evaluate the viability of our proposals, we apply our
method to the designs of two real-world CPS testbeds.
First, Secure Water Treatment (SWaT) (Secure Water
Treatment (SWaT) 2020; Mathur and Tippenhauer 2016),
a scaled-down version of a modern water purification
plant. SWaT is a complex multi-stage CPS involving
physical and chemical processes such as ultrafiltration,
de-chlorination, and reverse osmosis. Second, Water Dis-
tribution (WADI) (Ahmed et al. 2017), a scaled-down
version of a water distribution network typical of a city,
designed to account for varying patterns of peak and off-
peak water demand. Starting from high-level functional
requirements, we applied axiomatic design principles to
decompose the systems’ designs and identify dependen-
cies between their design parameters (i.e. sensors and
actuators). Using domain expertise and process graphs, we
transformed these into a suite of invariant checkers that
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were able to detect 13 different single- and multi-stage
attacks on the real systems, all without false positives.

Our paper is organised as follows. In our Background
section, we present an overview of the SWaT and WADI
testbeds, as well as a general attack classification that will be
used in the evaluation of our method. In Our Approach,
we present the three main steps of our design-level anal-
ysis, and show how axiomatic design principles can be
used to identify sets of dependent components that can
be transformed into invariants. In our Evaluation and dis-
cussion section, we assess the effectiveness of decision
tree learning for constructing our invariant checkers, their
ability to correctly label real SWaT and WADI inputs as
normal or anomalous, and then reflect on the strengths
and weaknesses of our approach. Finally, we compare our
approach against some Related work before drawing some
Conclusions and speculating on some future work.

This is a revised and extended version of our posi-
tion paper, Towards Systematically Deriving Defence
Mechanisms from Functional Requirements of Cyber-
Physical Systems (Yoong et al. 2020), adding the fol-
lowing new content: (1) an expanded description of
the approach, adding details of the training sets used,
an algorithm, and additional examples of invariants;
(2) the addition of WADI as a second case study;
(3) an evaluation of our invariant checkers against
13 different single- and multi-stage attacks; (4) new
Discussion and Related work sections offering some
critical reflections and comparisons; and (5) significant
improvements to all parts of the text, including additional
depth, examples, and figures.

Background

This section presents an overview of the two CPS testbeds
used to evaluate our proposed approach. First, we present
SWaT, a water purification plant that forms our princi-
pal case study, followed by our second testbed, the WADI
water distribution system. Finally, we clarify what is meant
by a CPS attack in the context of such systems.

SWaT testbed

The Secure Water Treatment (SWaT) testbed (Secure
Water Treatment (SWaT) 2020; Mathur and Tippen-
hauer 2016) is a scaled-down version of a modern water
purification plant, intended for supporting research into
cyber-security solutions for critical infrastructure. SWaT
is able to produce up to five gallons of safe drinking
water per minute across six distinct co-operating stages
(Fig. 1) involving chemical processes like ultrafiltration,
de-chlorination, and reverse osmosis. Each stage is con-
trolled by an Allen-Bradley ControlLogix Programmable
Logic Controller (PLC), which communicates with sen-
sors and actuators through a field-bus network, and with
each other through a 24-port Ethernet switch. A SCADA
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Fig. 1 Overview of the six stages of SWaT. Thick red arrows indicate the flow of water; dotted and dashed rectangles respectively indicate sensors
and actuators; thick black rectangles indicate tanks and sub-systems; and blue rectangles indicate the stages

workstation connects a human-machine interface to all
of the PLCs, facilitating monitoring and control of the
plant by human operators. The physical state of SWaT, as
observed by the sensors, is recorded by a historian server
at pre-specified intervals. A SWaT dataset is available,
consisting of all the data recorded by this server over a
period of several days, including a few during which the
testbed was subjected to attacks (iTrust Labs: Datasets
2020; Goh et al. 2016).

An overview of the six sub-processes of SWaT is given
in Fig. 1. A number of the testbed’s 68 sensors and actu-
ators are depicted, with sensors including Flow Indica-
tor Transmitters (FITs), Analyzer Indicator Transmitters
(AITs), and Level Indicator Transmitters (LITs). Actuators
include Motorised Valves (MVs) for controlling the inflow
of water into tanks and Pumps (Ps) for pumping it out.
Note that each stage is controlled by a dedicated PLC (not
shown in the figure).

Stage One. This is the first stage of SWaT, consisting
of a raw water tank (T-101), connected to a motorised

valve (MV-101) that controls the inflow of raw water. An
electromagnetic flow transmitter (FIT-101) reads the flow
rate of this water, and sends it to the PLC. Pump P-101
transfers water from T-101 into the chemical dosing pro-
cess of stage two. The operation of P-101 is interlocked to
the level indicator transmitter (LIT-301) in tank T-301 of
stage three.

Stage Two. Chemical dosing is applied in this stage.
The chemical properties of the incoming raw water are
measured using analyser indicator transmitters AIT-201,
AIT-202, and AIT-203. This information is used by the
PLC to control pumps P-201, P-202, and P-203, adjusting
the dosing and thus the water’s chemical properties before
it enters stage three.

Stage Three. Ultrafiltration (UF) is performed in this
stage. Raw water, after being dosed with chemicals in
stage two, is fed into a UF unit. The operation of P-301
is interlocked with the level indicator transmitter LIT-401
for the reverse osmosis (RO) feed water tank (T-401) in
stage four. Thus, P-301 is stopped when the water level
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Table 4 Linking SWaT's second-level decomposition of FRs to dependent DPs
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Functional Requirements (FRs)

Design Parameters (DPs)

FR1.1: Pump raw water from stage one to UF feed tank in stage three

FR1.2: Pump water from stage three to RO feed tank in stage four

FR1.3: Pump water from stage four through de-chlorination system

FR1.4: Pump (VSD) water from stage five to tanks in stage six

FR1.5: Pump water from RO permeate tank to raw water tank in stage one

FR1.6: Pump water for UF backwash system
FR1.7: Pump water for RO/UF cleaning

FR2.1: Determine water level in raw water tank of stage one
FR2.2: Determine water level in UF feed tank of stage three
FR2.3: Determine water level in RO feed tank of stage four

FR2.4: Determine water level in RO permeate tank of stage six
FR2.5: Determine water level in UF backwash tank of stage six
FR2.6: Determine water level in CIP tank of stage six

FR3.1: Measure raw water flow rate in stage one

FR3.2: Measure water flow rate in stage two
FR3.3: Measure water flow rate in stage three

FR3.84: Measure water flow rate in stage four

FR3.5: Measure water flow rate in stage five

FR3.6: Measure water flow rate in stage six

FR4.1: Calculate chemical properties of water

DP1.1: P-101, P-102

DP1.1.1: P-101; Other DPs: DP2.1(LIT-101), DP2.2(LIT-301),
DP7.1(MV-201)

DP1.1.2: P-102; Other DPs: DP2.1(LIT-101), DP2.2(LIT-301),
DP7.1(MV-201)

DP1.2: P-301, P-302

DP1.2.1: P-301; Other DPs: DP2.2(LIT-301), DP2.3(LIT-401),
DP7.1(MV-302)

DP1.2.2: P-302; Other DPs: DP2.2(LIT-301), DP2.3(LIT-401),
DP7.1(MV-302)

DP1.3: P-401, P-402

DP1.3.1: P-401; Other DPs: DP1.4(P-501,P-502), DP2.3(LIT-401)
DP1.3.2: P-402; Other DPs: DP1.4(P-501,P-502), DP2.3(LIT-401)
DP1.4: P-501, P-502

DP1.4.1: P-501; Other DPs: DP1.3(P-401,P-402), DP7.1(MV-501)
DP1.4.2: P-502; Other DPs: DP1.3(P-401,P-402), DP7.1(MV-501)
DP1.5: P-601; Other DPs: DP2.1(LIT-101), DP2.4(LS-601)

DP1.6: P-602; Other DPs: DP2.5(LS-602), DP7.1(MV-301)
DP1.7: P-603; Other DPs: DP2.6(LS-603)

DP2.1: LIT-101; Other DPs: DP1.1(P-101,P-102), DP1.5(P-601),
DP2.4(LS-601), DP7.1(MV-101)

DP2.2: LIT-301; Other DPs: DP1.1(P-101,P-102), DP1.2(P-301,P-
302), DP7.1(MV-201)

DP2.3: LIT-401; Other DPs: DP1.2(P-301,P-302), DP1.3(P-401,P-
402), DP7.1(MV-302)

DP2.4: LS-601; Other DPs: DP1.5(P-601), DP2.1(LIT-101)
DP2.5: LS-602; Other DPs: DP1.6(P-602), DP7.1(MV-301)
DP2.6: LS-603; Other DPs: DP1.7(P-603), DP7.1(MV-301)
DP3.1: FIT-101; Other DPs: DP2.1(LIT-101), DP7.1(MV-101)

DP3.2: FIT-201; Other DPs: DP1.1(P-101,P-102), DP2.2(LIT-301),
DP7.1(MV-201)

DP3.3: FIT-301; Other DPs: DP1.2(P-301,P-302), DP2.3(LIT-401),
DP7.1(MV-302)

DP3.4: FIT-401; Other DPs: DP1.3(P-401,P-402), DP2.3(LIT-401)
DP3.5: FIT-501,FIT-502,FIT-503,FIT-504

DP3.5.1: FIT-501; Other DPs: DP1.3(P-401,P-402)

DP3.5.2: FIT-502; Other DPs: DP1.4(P-501,P-502)

DP3.5.3: FIT-503; Other DPs: DP1.4(P-501,P-502)

DP3.5.4: FIT-504; Other DPs: DP1.3(P-401,P-402)

DP36: FIT-601; Other DPs: DP1.6(P-602), DP2.5(LS-602),
DP7.1(MV-301)

DP4.1: AIT-201,AIT-202,AIT-203,AIT-301,AIT-302,AIT-303,
AIT-401,AIT-402,AIT-501,AIT-502,AIT-503,AIT-504

DP4.1.1: AIT-201; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)
DP4.1.2: AIT-202; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)
DP4.1.3: AIT-203; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)
DP4.1.4: AIT-301; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
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Table 4 Linking SWaT's second-level decomposition of FRs to dependent DPs (Continued)

Functional Requirements (FRs)

Design Parameters (DPs)

FR5.1: Pump chemicals to water

FR6.1: Measure UF filter differential pressure

FR6.2: Measure RO membrane inlet pressure

FR6.3: Measure RO membrane pressure

FR6.4: Measure RO reject pressure

FR7.1: Control water flow direction

FR8.1: Determine NaCl level in NaCl tank of stage two
FR8.2: Determine HCl level in HCl tank of stage two
FR8.3: Determine NaOCl level in NaOCl tank of stage two

FR8.4: Determine NaHSO3 level in NaHSO3 tank of stage four

DP4.1.5: AIT-302; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP4.1.6: AIT-303; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP4.1.7: AIT-401; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.8: AlT-402; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.9: AIT-501; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.10: AIT-502; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.11: AIT-503; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)
DP4.1.11: AIT-504; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

DP5.1: P-201,P-202,P-203,P-204,P-205,P-206,P-207,P-208,P-
403,P-404

DP5.1.1: P-201; Other DPs: DP4.1.1(AIT-201), (
DP5.1.2: P-202; Other DPs: DP4.1.1(AIT-201), (
DP5.1.3: P-203; Other DPs: DP4.1.2(AIT-202), DP7.1.2(MV-201
) (
} (
(

( ), DP7.1.2(MV-201
( )
( )
DP5.1.4: P-204; Other DPs: DP4.1.2(AIT-202), DP7.1.2(MV-201
( )
( )
( )
( )

DP7.1.2(MV-201

DP5.1.5: P-205; Other DPs: DP4.1.3(AIT-203), DP7.1.2(MV-201
DP5.1.6: P-206; Other DPs: DP4.1.3(AIT-203), DP7.1.2(MV-201
DP5.1.7: P-207; Other DPs: DP4.1.5(AIT-302

DP5.1.8: P-208; Other DPs: DP4.1.5(AIT-302

DP5.1.9: P-403; Other DPs: DP4.1.8(AIT-402)

DP5.1.10: P-404; Other DPs: DP4.1.8(AIT-402)

DP6.1: DPIT-301; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302),
DP7.1(MV-302)

DP6.2: PIT-501; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

DP6.3: PIT-502; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502),
DP7.1.7(MV-501),

DP7.1.9(MV-503)

DP6.4: PIT-503; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502),
DP7.1.8(MV-502),

DP7.1.10(MV-504)

DP7.1: MV-101,MV-201,MV-301,MV-302,MV-303,MV-304,MV-
501,MV-502,MV-503,MV-504

DP7.1.1: MV-101; Other DPs: DP2.1(LIT-101)

DP7.1.2: MV-201; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102),
DP2.2(LIT-301)

DP7.1.3: MV-301; Other DPs: DP1.6(P-602), DP2.5(LS-602),
DP2.6(LS-603)

DP7.1.4: MV-302; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302),
DP2.3(LIT-401)

DP7.1.5: MV-303; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP7.1.6: MV-304; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)
DP7.1.7: MV-501; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)
( ), ( )
( ), ( )

DP7.1.8: MV-502; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502
DP7.1.9: MV-503; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502
DP7.1.10: MV-504; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)
DP8.1: LS-201; Other DPs: DP5.1.1(P-201), DP5.1.2(P-202)
DP8.2: LS-202; Other DPs: DP5.1.3(P-203), DP5.1.4(P-204)

DP8.3: LS-203; Other DPs: DP5.1.5(P-205), DP5.1.6(P-206),
DP5.1.7(P-207), DP5.1.8(P-208)

DP8.4: LS-401; Other DPs: DP5.1.9(P-403), DP5.1.10(P-404)
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