
Bot-Driven Development: From Simple Automation
to Autonomous Software Development Bots

Christoph Treude
School of Computing and Information Systems

Singapore Management University
Singapore

ctreude@smu.edu.sg

Christopher M. Poskitt
School of Computing and Information Systems

Singapore Management University
Singapore

cposkitt@smu.edu.sg

Abstract—As software development increasingly adopts au-
tomation, bot-driven development (BotDD) represents a transfor-
mative shift where bots assume proactive roles in coding, testing,
and project management. In bot-driven development, bots go
beyond support tasks, actively driving development workflows
by making autonomous decisions, performing independent as-
sessments, and managing code quality and dependencies. This
paper explores how bot-driven development impacts traditional
development roles, particularly in redefining driver-navigator
dynamics, and aligns with DevOps goals for faster feedback, con-
tinuous learning, and efficiency. We propose a research agenda
addressing challenges in bot-driven development, including skill
development for developers, human-bot trust dynamics, optimal
interruption frequency, and ethical considerations. Through em-
pirical studies and prototype systems, our aim is to define best
practices and governance structures for integrating bot-driven
development into modern software engineering.

Index Terms—Bot-driven development, software engineering
automation, human-bot collaboration.

I. WHO IS THE DRIVER?

In traditional pair programming, collaboration revolves
around two well-defined roles: the driver and the navigator [1].
The driver actively writes code, focusing on the technical
details and syntax, while the navigator maintains a broader
view, offering feedback on design, strategy, and potential
problems. This complementary dynamic allows both team
members to contribute unique perspectives: the driver handling
the fine details, and the navigator maintaining a strategic
overview.

However, with tools like GitHub Copilot—tagged as “Your
AI pair programmer” [2]—this clear division begins to blur.
On the one hand, Copilot could be seen as a “navigator”,
reacting to the developer’s input and providing suggestions
that align with the immediate coding context. But unlike
a human navigator, Copilot does not have an understand-
ing of the project’s overarching goals, design principles, or
strategic objectives. It operates reactively, offering snippets
that fit syntactically or structurally, without questioning intent
or suggesting alternative approaches based on higher-level
considerations.

Labeling Copilot as a navigator is tempting, but it lacks the
true qualities of a navigator. A traditional navigator actively
monitors the driver’s work, contributes ideas to shape the
broader direction of the task, and might even stop progress to

suggest a more effective approach [3]. However, Copilot does
not interrupt or interject with strategic recommendations; it
functions silently, offering suggestions only when prompted by
the context of the code being written. The developer ultimately
decides whether to accept, reject, or modify these suggestions,
effectively making them both a driver and a navigator.

Conversely, it is not accurate to consider Copilot the
“driver” and the developer the “navigator”. While Copilot
writes code snippets, it does so only in response to cues from
the human developer; it cannot initiate, plan, or consider the
implications of its suggestions. The developer actively guides
the direction of the code, prompts Copilot through their own
writing, and is responsible for aligning its contributions with
the larger objectives. Therefore, while Copilot contributes to
the coding process, it lacks the autonomy, awareness, and
decision-making capabilities to function as a true driver [4].

In this interaction, the developer is both driver and navigator,
relying on Copilot for small-scale, context-specific suggestions
without the broader strategic contribution that a human navi-
gator might provide. This blended role creates a unique form
of co-driven development, where the human still directs the
task’s path but with continuous quiet help from AI [5].

Beyond Copilot, the landscape of bots in software de-
velopment is diverse, ranging from tools that offer syntax
support and code generation to those that streamline version
control, automate testing, and assist with deployment [6]. For
example, Renovate1 is a bot that manages dependency updates,
automatically opening pull requests when libraries in a project
are out of date. Common examples include linting bots that
enforce coding standards, dependency management bots that
monitor and update third-party libraries, and issue triaging bots
that help manage and prioritize reported issues in repositories.
Each of these bots takes on specialized tasks, contributing to
the overall development process but typically in discrete, well-
defined ways [7].

Most bots in today’s ecosystem perform their tasks inde-
pendently of the core development activity, often activating
at specific stages or as scheduled jobs. Their interactions
with developers are largely non-intrusive; they either automate
routine maintenance or perform quality assurance tasks that

1https://www.mend.io/renovate/

https://www.mend.io/renovate/


occur after the primary code has been written [8]. For example,
ESLint2 is a popular linting bot that enforces JavaScript code
style and best practices, automatically flagging issues for
developers. This range of functionalities has led to a bot-
assisted development environment where human developers
remain in charge, and bots perform supportive ancillary roles.

One prominent category of these bots is Continuous In-
tegration (CI) bots, which generally represent the final step
in the development process. CI bots automate testing, code
quality checks, and integration validations, functioning as a
last line of defense before the code is merged or deployed.
For example, GitHub Actions3 can be configured as a CI bot
that runs tests on code changes and verifies that they meet
quality standards before merging [9]. Unlike Copilot, CI bots
are not active collaborators in the development flow itself;
they only engage once the human developer has completed
the main development work. In this sense, CI bots act more
as quality gatekeepers than co-drivers. They enforce standards
and identify potential problems, but they do not contribute to
the creative aspects of problem solving in development.

As we move toward bot-driven development, these distinc-
tions challenge us to rethink driver and navigator roles. In
a future where more intelligent, autonomous bots participate
actively in all stages of development, we may see an evolution
from passive to interactive bot roles. Developers could work
with bots that dynamically engage at both the micro- and
macro-levels, providing input that extends beyond syntax
suggestions to design insights, performance recommendations,
and architectural decisions. This shift will redefine both agency
and collaboration, positioning bots not just as tools but as
active partners in development.

II. BOT-DRIVEN DEVELOPMENT

In bot-driven development (BotDD), bots play an active
role, shaping the development process in real time. Unlike
the current landscape, where bots mostly provide passive
assistance, bot-driven development positions them as proactive
agents in the software creation workflow. These bots not only
automate routine tasks, but actively manage, assess, and drive
progress. This aligns closely with the DevOps goals of faster
flow, fast feedback, and continuous learning [10], [11]. By
embedding immediate feedback directly into the development
cycle, bot-driven development allows issues to be identified
and addressed before they are passed further down the stream.
Rather than simply waiting for human direction, bots in
a bot-driven development setting can continuously monitor
code, review standards, and make autonomous decisions on
prioritizing fixes or improvements, accelerating feedback loops
and reducing bottlenecks.

In a bot-driven development environment, bots are envi-
sioned as running continuously in the background, assessing
the state of code, dependencies, and potential risks, and even
assigning urgency levels to tasks. For example, imagine a

2https://eslint.org/
3https://github.com/features/actions

security bot that detects a vulnerability in a newly merged
code update. Instead of merely notifying the developer, this
bot could independently evaluate the severity of the issue,
consider its potential impact on other systems, and prioritize
it for immediate resolution or schedule it for later if it is less
critical. This kind of autonomous prioritization helps teams
stay focused on critical issues while still addressing smaller
improvements over time. Another example might involve a
bot that monitors library dependencies. If a dependency be-
comes outdated or potentially insecure, the bot could evaluate
whether an update aligns with the current project goals and
then automatically apply, test, and deploy the update if the
assessment is favorable. This autonomy in managing critical
aspects of the codebase brings us closer to a scenario where
bots are not just tools but operational team members actively
engaged in ensuring high-quality, safe, and maintainable soft-
ware.

What could this look like in practice? Here are some
emerging dynamics that we can anticipate:

First, there is a potential for multi-agent bot collabora-
tion [12]. Rather than a single bot handling all the responsi-
bilities, different specialized bots could collaborate as a team.
Each bot might focus on a specific aspect of development:
one continuously optimizes the code for performance, another
tracking dependencies, and a third monitoring code for security
issues. Imagine a scenario where a security-focused bot flags a
potential vulnerability, prompting the dependency bot to assess
if a new library version can address it, and a performance bot
to determine if this update has performance impacts. The bots
then coordinate to make a collective decision on whether to
proceed with an update, with the dependency bot initiating
it if the consensus is reached. This collaborative network of
bots could act as an intelligent, adaptive ecosystem, bringing
in precise and timely interventions without requiring human
intervention for every decision.

This shift also reimagines the role of the developer as a
bot moderator. In bot-driven development, developers would
spend less time on manual coding and debugging and more
time orchestrating and guiding the collective contributions of
multiple bots [13]. They might set high-level goals, monitor
how bots interpret these goals, and intervene to correct or
adjust the course when necessary. For example, a developer
might monitor a real-time dashboard that visualizes the activ-
ities of different bots and how their actions align with project
milestones. If a bug detection bot starts to focus a lot on
minor cosmetic issues rather than critical bugs, the developer
could adjust the bot’s parameters to prioritize high-severity
errors. In this way, the developer is less involved in day-to-
day coding and more engaged in a high-level management
role, fine-tuning, and supervising bot interactions.

Looking further ahead, bot-driven development may even-
tually pave the way toward autonomous development [14].
In this vision, bots evolve to handle entire coding tasks
independently, from writing and testing to integrating and
deploying code changes. For example, a team could begin
a project by defining a set of specifications, and from there

https://eslint.org/
https://github.com/features/actions


a group of bots would autonomously develop features, run
tests, and even optimize performance based on usage data.
Bots could check and refactor each other’s code and even
suggest new features based on analytics, learning over time
to better align with user needs. Here, developers would move
almost entirely into an oversight role, periodically checking
that the direction of the system aligns with the project’s goals
and stepping in only when complex, high-level adjustments
are required.

This trajectory toward autonomy, multi-agent collaboration,
and bot moderation marks a profound shift in software devel-
opment. In bot-driven development, developers are no longer
just creators of code but facilitators, orchestrators, and vision-
setters. By transforming the development process from human-
driven to bot-driven, bot-driven development has the potential
to not only improve speed and accuracy but also create a
sustainable, adaptive workflow where bots become reliable,
independent contributors in the ongoing evolution of software.

III. RESEARCH AGENDA

The shift to bot-driven development introduces a series of
research challenges that need to be addressed to fully leverage
the potential of autonomous and collaborative bots in software
development. In the following, we outline key challenges,
research questions, and possible approaches to explore these
questions.

A. Implications for Skill Development in Bot-Driven Teams

As bots take on more active roles in development, the
skills required from developers will shift [15]. Developers
will need new competencies, such as configuring, debugging,
and monitoring bots in real-time. Understanding how these
skills evolve is crucial to preparing developers for bot-driven
environments.

Research Questions: What skills are required for devel-
opers working in bot-driven teams? How can developers best
moderate and orchestrate multi-bot systems? What new com-
petencies (e.g., bot configuration, bot debugging, workflow
monitoring) will developers need, and how should educational
programs evolve to support these competencies?

Surveys and interviews with developers working with ad-
vanced bot-driven systems could help identify emerging skill
requirements. Controlled experiments in educational settings
where students are exposed to bot-driven workflows can
provide insight into how skill development progresses. Fur-
thermore, longitudinal studies could track skill acquisition
and adjustment as developers gain experience with bot-driven
environments, highlighting areas that need targeted training or
additional support.

B. Human-Bot Trust and Collaboration Dynamics

Establishing trust in bots is essential for effective collabo-
ration, especially as bots become more autonomous in making
decisions [16]. Factors such as transparency, predictability, and
explainability of bot actions play a critical role in building and
maintaining this trust.

Research Questions: What factors influence developer trust
in autonomous bots within bot-driven development? How can
bot behavior, transparency, and explainability be optimized to
build and maintain trust? How does the predictability or relia-
bility of bot-driven decisions affect human-bot collaboration?

To address these questions, experiments can be designed
that vary bot transparency levels, confidence indicators, and
error rates, observing how these factors impact developer
trust and performance. Ethnographic studies could provide
deeper insights by observing developer interactions with bots
over time in real-world settings. Cognitive walk-throughs and
usability testing can assess how interface design influences
trust and collaboration dynamics.

C. Tuning Frequency of Interruptions and Confidence of Bots

In bot-driven development, bots need to provide timely
assistance without overwhelming developers. Finding the right
balance in the frequency of bot interruptions and confidence
indicators is key to ensuring productive workflows and mini-
mizing disruption [17].

Research Questions: How can bots be tuned to provide
the right amount of feedback or interruptions to optimize
productivity? What levels of confidence should bots demon-
strate to effectively support developer decision-making without
overwhelming or disrupting the workflow? What metrics can
be used to gauge appropriate interruption levels?

User studies that vary the frequency of interruption and
confidence indicators between bot setups could reveal the most
effective configurations. Real-time metrics, such as developer
engagement and task flow, could be analyzed to correlate bot
behavior with productivity and satisfaction. Machine learning
models trained on these metrics could allow bots to adjust the
frequency of interruption adaptively, customizing interactions
based on developer preferences.

D. Workflow Integration and Interfaces

Seamlessly integrating bots into development workflows is
critical to maximizing their utility. Effective interfaces are
needed to support interaction with multiple bots, facilitate
smooth oversight, and minimize cognitive load for develop-
ers [18].

Research Questions: How should bots be integrated into
existing software development workflows? What are the op-
timal interface designs for bot-driven systems to support
seamless, transparent interactions? How can multi-bot collabo-
ration interfaces be designed to facilitate human oversight and
intervention without cluttering the developer experience?

Participatory design sessions with developers could help
explore the preferences of the interface and workflow, offer-
ing practical insights into effective bot integration. Usability
testing with prototypes would allow researchers to assess the
impact of different interaction models, such as dashboards,
embedded notifications, and multi-bot status displays. Real-
world case studies in development environments could pro-
vide feedback on interface effectiveness and suggest further
adjustments to improve the developer experience.



E. Customization and Project Constraints

Bots need to operate within specific project constraints, such
as coding standards, security requirements, and performance
goals. Allowing customization of bot behaviors for different
project needs is crucial to ensure that bots act in line with
project-specific boundaries [19].

Research Questions: How can bot behaviors be customized
to align with unique project constraints, such as security
requirements, performance goals, or coding standards? What
customization options do developers need to ensure that bots
act within project-specific boundaries? How can bots learn
to dynamically adapt to the evolving constraints of long-term
projects?

To explore these questions, interviews and surveys with
developers could identify common customization needs across
various projects. Scenario-based testing, where developers
adjust bot settings and observe effects on project outcomes,
could reveal which constraints are essential versus optional.
Reinforcement learning techniques could be tested to develop
adaptive bots that adapt to changing project constraints based
on developer feedback.

F. Human Moderation and Intervention Strategies in Multi-
Bot Systems

As multi-bot systems become more common, developers
will need strategies to manage and intervene in these work-
flows. Determining the right level of control for developers in
bot-driven systems is essential to maintaining productivity and
flexibility.

Research Questions: What strategies can developers use
to effectively moderate and intervene in multi-bot systems?
What level of control should developers have over bots’
decisions and actions? How can systems be designed to allow
for easy prioritization and intervention without disrupting the
autonomous workflow of bots?

Data from user studies in simulated multi-bot environments
could reveal how developers prioritize and intervene in bot-
driven workflows. Task-switching scenarios can shed light
on effective intervention strategies and prioritization needs.
Prototyping different levels of control and tracking developer
satisfaction and productivity in these configurations could
inform optimal control schemes for bot-driven systems.

G. Developing Metrics for Autonomous Bot Performance and
Reliability

For bots to be reliable team members, we need metrics that
accurately measure their performance and reliability in differ-
ent phases of development. These metrics will be essential for
evaluating the effectiveness of autonomous bots and ensuring
that they meet project goals [20].

Research Questions: How can the performance and relia-
bility of bots be accurately measured in a bot-driven develop-
ment environment? What metrics are most relevant for evalu-
ating the effectiveness of autonomous bots in different stages
of development? How can real-time metrics support decision
making for developers who oversee bot-driven systems?

Experiments could test metrics such as code quality, bug
detection accuracy, task completion time, and dependency
updates. Bot-generated outputs could be tracked over time and
compared to human-generated outputs, creating a benchmark
for performance. Machine learning could be applied to de-
velop predictive metrics that identify when bots are likely to
encounter issues, allowing preemptive human intervention.

H. Ethical, Legal, and Sustainability Considerations

As bots assume more responsibility in their development,
ethical and legal challenges arise. Ensuring accountability and
ethical practices in bot-driven development will require new
governance structures and clear guidelines [21]. Furthermore,
the environmental impact and carbon footprint of these bots
must be analyzed and minimized [22].

Research Questions: What are the ethical and legal consid-
erations when bots generate code autonomously? How can ac-
countability be ensured in cases where bots make independent
decisions that lead to critical bugs or security issues? What
guidelines and governance structures are needed to support
ethical bot-driven development? Can we optimize these bots to
minimize energy consumption while still remaining effective
at their tasks?

Literature reviews and expert interviews in fields such as AI
ethics and law could help identify emerging ethical concerns.
Case studies in bot-driven environments would provide real-
world examples of accountability and liability issues. Cross-
disciplinary workshops with developers, ethicists, and legal
experts could explore and refine best practices for governance
in bot-driven development. Model optimization and configu-
ration tuning techniques could help in making the underlying
models of bots more sustainable.

IV. CONCLUDING REMARKS

Bot-driven development (BotDD) presents an opportunity to
rethink software engineering and pair programming by trans-
forming bots from supportive tools into active, autonomous
agents that manage and enhance development workflows. This
shift brings both potential and complexity: as bots assume
more responsibilities, new challenges emerge in skill acquisi-
tion, human-bot collaboration, and trust. Our research agenda
outlines key areas for future investigation, with the aim of an-
swering critical questions about bot customization, workflow
integration, interruption tuning, and ethical governance. By
addressing these questions, the field can better understand how
to integrate bot-driven development effectively, supporting
both faster development cycles and more adaptive workflows.
Ultimately, bot-driven development could empower developers
to focus on high-level orchestration and strategic oversight,
creating a collaborative, resilient development environment
where bots and humans work seamlessly together. As this
paradigm evolves, it holds the potential to reshape software
engineering practices, making them more efficient and aligned
with the complexities of modern development demands.



REFERENCES

[1] L. Williams, “Integrating pair programming into a software development
process,” in Proceedings of the Conference on Software Engineering
Education and Training (CSEE&T’01). IEEE, 2001, pp. 27–36.

[2] C. Bird, D. Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou,
T. Lowdermilk, and I. Gazit, “Taking Flight with Copilot: Early in-
sights and opportunities of AI-powered pair-programming tools,” Queue,
vol. 20, no. 6, pp. 35–57, 2022.

[3] J. Chong and T. Hurlbutt, “The social dynamics of pair programming,”
in Proceedings of the International Conference on Software Engineering
(ICSE’07). IEEE, 2007, pp. 354–363.

[4] L. Plonka, J. Segal, H. Sharp, and J. Van Der Linden, “Collaboration
in pair programming: driving and switching,” in Proceedings of the
International Conference on Agile Processes in Software Engineering
and Extreme Programming (XP’11). Springer, 2011, pp. 43–59.

[5] D. Wang, E. Churchill, P. Maes, X. Fan, B. Shneiderman, Y. Shi, and
Q. Wang, “From human-human collaboration to human-AI collabora-
tion: Designing AI systems that can work together with people,” in
Extended Abstracts of the Conference on Human Factors in Computing
Systems (CHI’20), 2020, pp. 1–6.

[6] M. Wessel, B. M. De Souza, I. Steinmacher, I. S. Wiese, I. Polato,
A. P. Chaves, and M. A. Gerosa, “The power of bots: Characterizing
and understanding bots in OSS projects,” Proceedings of the ACM on
Human-Computer Interaction, vol. 2, no. CSCW, pp. 1–19, 2018.

[7] S. Santhanam, T. Hecking, A. Schreiber, and S. Wagner, “Bots in
software engineering: a systematic mapping study,” PeerJ Computer
Science, vol. 8, p. e866, 2022.

[8] M. Wessel, A. Abdellatif, I. Wiese, T. Conte, E. Shihab, M. A. Gerosa,
and I. Steinmacher, “Bots for pull requests: The good, the bad, and the
promising,” in Proceedings of the International Conference on Software
Engineering (ICSE’22), 2022, pp. 274–286.

[9] M. Wessel, J. Vargovich, M. A. Gerosa, and C. Treude, “GitHub Actions:
the impact on the pull request process,” Empirical Software Engineering,
vol. 28, no. 6, p. 131, 2023.

[10] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: trends and challenges,” in Proceedings of the International
Workshop on Rapid Continuous Software Engineering (RCoSE’14),
2014, pp. 1–9.

[11] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook:
How to Create World-Class Agility, Reliability, & Security in Technology
Organizations, 2nd ed. IT Revolution Press, 2021.

[12] J. He, C. Treude, and D. Lo, “LLM-based multi-agent systems for
software engineering: Literature review, vision and the road ahead,”
ACM Transactions on Software Engineering and Methodology, 2025.

[13] E. Shihab, S. Wagner, M. A. Gerosa, M. Wessel, and J. Cabot, “The
present and future of bots in software engineering,” IEEE Software,
vol. 39, no. 5, pp. 28–31, 2022.

[14] Z. Rasheed, M. A. Sami, K.-K. Kemell, M. Waseem, M. Saari, K. Systä,
and P. Abrahamsson, “CodePori: Large-scale system for autonomous
software development using multi-agent technology,” arXiv preprint
arXiv:2402.01411, 2024.

[15] Q. Ma, H. Shen, K. Koedinger, and S. T. Wu, “How to teach program-
ming in the AI era? using LLMs as a teachable agent for debugging,”
in Proceedings of the International Conference on Artificial Intelligence
in Education (AIED’24). Springer, 2024, pp. 265–279.

[16] L. Erlenhov, F. G. D. O. Neto, and P. Leitner, “An empirical study
of bots in software development: Characteristics and challenges from
a practitioner’s perspective,” in Proceedings of the Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’20), 2020, pp. 445–
455.

[17] C. Parnin and S. Rugaber, “Resumption strategies for interrupted pro-
gramming tasks,” Software Quality Journal, vol. 19, pp. 5–34, 2011.

[18] M. Yuan, J. Chen, and A. Quigley, “MAxPrototyper: A multi-agent
generation system for interactive user interface prototyping,” arXiv
preprint arXiv:2405.07131, 2024.

[19] S. Hidaka, Z. Hu, M. Litoiu, L. Liu, P. Martin, X. Peng, G. Wang,
and Y. Yu, “Design and engineering of adaptive software systems,” in
Engineering Adaptive Software Systems: Communications of NII Shonan
Meetings. Springer, 2019, pp. 1–33.

[20] J. Hernández-Orallo, “Evaluation in artificial intelligence: from task-
oriented to ability-oriented measurement,” Artificial Intelligence Review,
vol. 48, pp. 397–447, 2017.

[21] B. Johnson and J. Smith, “The role of ethics in engineering fair AI (and
beyond),” in Equity, Diversity, and Inclusion in Software Engineering:
Best Practices and Insights. Springer, 2024, pp. 135–149.

[22] J. Shi, Z. Yang, H. J. Kang, B. Xu, J. He, and D. Lo, “Greening large
language models of code,” in Proceedings of the 46th International
Conference on Software Engineering: Software Engineering in Society,
2024, pp. 142–153.


	Who is the Driver?
	Bot-Driven Development
	Research Agenda
	Implications for Skill Development in Bot-Driven Teams
	Human-Bot Trust and Collaboration Dynamics
	Tuning Frequency of Interruptions and Confidence of Bots
	Workflow Integration and Interfaces
	Customization and Project Constraints
	Human Moderation and Intervention Strategies in Multi-Bot Systems
	Developing Metrics for Autonomous Bot Performance and Reliability
	Ethical, Legal, and Sustainability Considerations

	Concluding Remarks
	References

