Finding Causally Different Tests for an
Industrial Control System

Christopher M. Poskitt*, Yugi Chen'*, Jun Sun*, and Yu Jiang®
*Singapore Management University, Singapore
TShanghaiTech University, China
J:Shanghai Engineering Research Center of Energy Efficient and Custom Al IC, China
§Tsinghua University, China

Abstract—Industrial control systems (ICSs) are types of cyber-
physical systems in which programs, written in languages such
as ladder logic or structured text, control industrial processes
through sensing and actuating. Given the use of ICSs in critical
infrastructure, it is important to test their resilience against
manipulations of sensor/actuator inputs. Unfortunately, existing
methods fail to test them comprehensively, as they typically
focus on finding the simplest-to-craft manipulations for a testing
goal, and are also unable to determine when a test is simply
a minor permutation of another, i.e. based on the same causal
events. In this work, we propose a guided fuzzing approach for
finding ‘meaningfully different’ tests for an ICS via a general
formalisation of sensor/actuator-manipulation strategies. Our
algorithm identifies the causal events in a test, generalises them
to an equivalence class, and then updates the fuzzing strategy so
as to find new tests that are causally different from those already
identified. An evaluation of our approach on a real-world water
treatment system shows that it is able to find 106 % more causally
different tests than the most comparable fuzzer. While we focus
on diversifying the test suite of an ICS, our formalisation may be
useful for other fuzzers that intercept communication channels.

Index Terms—Cyber-physical systems, fuzzing, test diversity,
equivalence classes, causality

I. INTRODUCTION

Industrial control systems (ICSs) are types of cyber-physical
systems (CPSs) consisting of programs, written in languages
such as ladder logic or structured text, that control industrial
processes through sensing and actuating. While these programs
(the cyber part) are often simple when viewed in isolation,
the system as a whole is more complex than the sum of its
parts due to the integration of multiple physical processes.
Given this high level of complexity, as well their ubiquity in
domains such as critical infrastructure, it is important that ICSs
are systematically tested and analysed against a diversity of
sensor/actuator manipulations, so as to ensure that their various
defences (e.g. anomaly detectors [1]-[6], digital fingerprint-
ers [7]-[9], invariant checkers [10]-[14]) react appropriately to
potential attacks and failures. Unfortunately, this is challenging
when benchmarks do not exist for the system under test, as
it takes significant time and expertise to construct quality test
suites for ICSs from scratch.

An alternative approach, in the absence of benchmarks, is to
assess ICS defences against tools such as ‘CPS fuzzers’ [15]-
[18], which automatically search for potential tests, i.e. manip-
ulations of different network inputs that drive the system to-

wards a targeted unsafe physical state (e.g. a dangerously high
tank level in a water treatment system). The fuzzers proposed
in our previous work [15], [16], for example, find tests based
on the manipulation of high-level actuator commands or low-
level bit flipping in network packets. In both cases, the search
is guided by machine learning (ML) models that predict the
effects of potential manipulations. Experimental evaluations
of these fuzzers show they can generate test suites that cover
a similar range of testing goals to those of an established
benchmark [19] for a water treatment testbed.

These fuzzers, unfortunately, share a critical common lim-
itation in that they focus on the destination rather than the
journey: their underlying search algorithms are designed to
find some test as quickly as possible, but give little attention to
the details of its steps, so long as it achieves the testing goal.
First, the fuzzers do not consider whether all the individual
manipulations in a test were actually necessary for it to
have succeeded, potentially leading to tests that are easier for
countermeasures to detect (since they are not as ‘subtle’ as
they could have been). Second, once a test is identified, the
fuzzers have no systematic way of determining whether there
are different strategies that bring about the same unsafe state
(i.e. same testing goal). This potentially leads to test suites
that lack diversity, in that they are dominated by tests that are
‘easier’ for the search algorithms to find. This is exactly what
we observe on an actual benchmark for a real-world water
treatment system [20], which was accumulated over a period of
several years with the help of industrial domain experts as well
as researchers, multiple hackathons (with teams from academia
and industry), and fuzzers. In particular, it only contains at
most one or two tests per stated goal.

Addressing these two problems is harder for ICSs and
CPSs in general than it might at first seem. Identifying the
necessity of individual manipulations boils down to an analysis
of causality (or cause and effect), and this is made more com-
plicated by factors such as sequencing of steps. For example,
the manipulation of a particular actuator might only be causal
for a test if it takes place after the manipulation of another.
Furthermore, the problem of finding different tests with the
same goal (i.e. reaching the same unsafe physical state) is
challenging due to the ambiguity of what it means for two
tests to be ‘different’. Suppose, for example, that manipulation
z followed by y brings about a targeted unsafe state. If y

CPSP
test goal y Causality set of tests
testt | Analysis distinct under ~
test strategy T Searchfor [! test
Test g | tmin
equivalence class ~ test strategy - Update
T I Excl([tpinl) Strategy

Fig. 1. Overview of our approach for finding causally different tests

followed by z brings about the same unsafe state, is this to
be considered ‘different’, given that the same manipulations
are used? What about a sustained sequence of x followed by
y? Or x followed by x and y together? While all these tests
are different in a strict sense, depending on the context, they
may not be different in a meaningful way. Current fuzzers,
unfortunately, lack any support for this kind of reasoning.

In this work, we present a comprehensive and practical
guided fuzzing approach for finding meaningfully different
tests, based on a general formalisation of sensor/actuator-
manipulation strategies. Our algorithm identifies the causal
manipulations in a test, i.e. without which the test would not
have achieved its goal. It then generalises the test to a user-
defined equivalence class, which formalises what it means for
tests to be the ‘same’ based on common factors such as the
set of (causal) manipulations used, or the sequence they were
utilised in. Finally, it updates its fuzzing strategy so as to find
new tests that are causally different based on the equivalence
classes previously identified.

Figure 1 gives an overview of this general approach, show-
ing how a test strategy 7 is updated to exclude tests equivalent
to a previous one ¢ under equivalence class ~. Our underlying
algorithm is based on the idea of modelling test strategies
as transition systems labelled with the sensor/actuator values
that can be manipulated. After deriving a test from a strategy,
the strategy is updated to guide the search away from tests
that simply belong to the same equivalence class, ensuring the
next test succeeds for different reasons. This ability to exclude
causally equivalent tests from the search is the key contribution
of our formalism that differs it from other test case generation
approaches on labelled transition systems (LTSs) (e.g. [21]).

We demonstrate the practical viability of our formalisation
and approach by implementing a causal fuzzer for the Secure
Water Treatment (SWaT) testbed [22], a complex multi-stage
water purification system based on a real-world plant. First,
our experiments show that our fuzzer is able to derive tests for
16 different goals, matching the coverage of previous fuzzers
that were applied to this ICS. Second, but most importantly,
we find 33 causally different tests for achieving those 16
goals, i.e. 106% more causally different tests than before.
Furthermore, we found that using our causal equivalence
classes allowed our fuzzer to reduce the test suite by 4 orders
of magnitude while still covering all relevant causal events.

Overall, this paper makes the following contributions:

o A general formalisation of test strategies based on LTSs
and traces of sensor/actuator manipulations;

o Three equivalence classes for characterising what it
means for two tests to be the ‘same’;

¢ A linear-time over-approximation algorithm for identify-
ing the causal events in a test;

o A goal-driven test generation strategy that combines
fuzzing with our LTSs;

« An implementation of the approach for a water treatment
system that found 33 causally different tests.

While our focus is on diversifying the test suite of an ICS,
it is possible that our formalisation could be applied to any
kind of software/system in which the execution trace can be
influenced by intercepting some communication channel.

II. CASE STUDY: SWAT TESTBED

We use a complex real-world ICS as our running example:
the Secure Water Treatment (SWaT) testbed [22], [23]. SWaT
is a scaled-down version of a working water purification plant,
intended to support research on securing and defending critical
infrastructure. SWaT consists of a modern six-stage process
that produces up to five gallons of safe drinking water per
minute. Each stage focuses on a particular chemical process
(e.g. dosing, ultrafiltration, or dechlorination) and is controlled
by a dedicated Allen-Bradley ControlLogix Programmable
Logic Controller (PLC). These PLCs repeatedly cycle through
their programs, computing the appropriate commands to send
to actuators based on the latest sensor readings received. The
testbed consists of 36 sensors in total, including water flow
indicator transmitters (FITs), tank level indicator transmitters
(LITs), and chemical analyser indicator transmitters (AITSs).
Among the 30 actuators are motorised valves (MVs) for
controlling the inflow of water to tanks, and pumps (Ps) for
pumping the water out. Figure 2 provides an overview of the
six stages, as well as the main sensors and actuators involved.

The network of the SWaT testbed is organised into a layered
hierarchy compliant with the ISA99 standard, providing dif-
ferent levels of segmentation and traffic control. The ‘upper’
layers of the hierarchy, Levels 3 and 2, respectively handle
operation management (e.g. the historian server that logs
data) and supervisory control (e.g. touch panel, engineering
workstation). Level 1 is a star network connecting the PLCs,
and implements the Common Industrial Protocol (CIP) over
EtherNet/IP. Finally, the ‘lowest’ layer of the hierarchy is
Level 0, which consists of ring networks that connect indi-
vidual PLCs to their relevant sensors and actuators.

Each sensor in SWaT is associated with a manufacturer-
defined range of safe values, which they are expected to remain
within at all times during normal operation. If a sensor reports
a (true) reading outside of this range, we say the physical state
of the system has become unsafe. If the tank level indicator
transmitter LIT101 in stage one, for example, reports a reading
below 250mm, then the physical state has become unsafe due
to the risk of an underflow scenario (which can damage the
pumps). Similarly, a pressure reading outside of the safe range
indicates that a pipe is at risk of bursting.

Stage/PLC #1: Raw Water Store Stage/PLC #2: Chemical Dosing

NaCl Tank HCI Tank

Raw Water
Tank (T101)

[
NaOCI Tank ,
(T203) 8n g
Sb AL
TENET
L
Static
Mixer

»

Stage/PLC #3: Ultrafiltration (UF)

UF Feed
Water Tank

UF Backwash
Tank (T602)

-
I
—
I
I

Lol LI

RO Permeate

Tank (T601)

RO Feed
Water Tank

Fig. 2. Overview of the six sub-stages of SWaT (blue arrows indicate water flow; dashed/solid rectangles indicate sensors/actuators)

SWaT is associated with a number of additional resources
beyond the physical testbed itself. First, it has an extensive
dataset [19], [20], consisting of the sensor readings and
actuator states observed over seven days of continuous normal
operation, and four days of various benchmarked attack scenar-
i0s. Furthermore, SWaT has a simulator [24] that can be used
for offline analyses. Built in Python, it faithfully simulates the
control logic of the PLCs, and executes models of some key
physical processes (e.g. water flow). As it was cross-validated
against real data from the dataset, the simulator can be used as
a way to initially evaluate various over- and underflow attacks
without wasting the resources of the physical testbed.

Across the six sub-processes of SWaT, there are several
different unsafe physical states as measured by the sensors. In
Stage 3, for example, if the differential pressure transmitter
DPIT301 detects a pressure level less than 0.1 bar, the ultra-
filtration process is in an unsafe state because the subsequent
backwash process will become stuck. A CPS fuzzer that aims
to get DPIT301 below this threshold as soon as possible will
typically find the simplest way to do so, i.e. by manipulating
at least the motorised valve MV302. However, this is not the
only way that this unsafe state can be brought about: one can
also switch off two pumps (P301 and P302) or open MV301,
MV303, and switch on P602. Finding these alternative tests
automatically is difficult without a causal understanding of
why the tests succeed, or a way to determine that a test is not
simply a permutation of an ‘equivalent’ one.

III. SYSTEMS, STRATEGIES, AND TESTS

In order to solve the problem of finding causally different
tests for ICSs such as SWaT, we need a formalisation that
allows fuzzers to reason precisely about tests, manipulation
strategies, and causal events. We thus present an intuitive
formal definition of systems, define strategies as LTSs, and
formalise tests as traces of sensor/actuator manipulations.

Our formalism aims for generality, modelling the key char-
acteristics of CPSs (e.g. control states, physical states, and
sensing/actuating components) in a way that abstracts away
from specific ICS implementation details (e.g. ladder logic).
We remark that while generality is our intention, our current
evaluation and case study focus on an ICS representative of

the water domain. Assessing the utility of this formalisation
for other kinds of CPSs is important future work.

A. Systems

Intuitively, a CPS consists of software interacting with one
or more physical processes via components connected over
a network. In this work, we assume there to be two types
of components: sensors, which read continuous data from the
physical state (e.g. temperature, pressure, flow), and actuators,
which are mechanised devices for controlling the process
(e.g. motorised pumps or valves).

Definition 1 (Component; sensor; actuator). A component c
is a device for interacting with a physical process; it has an
internal state derived from an associated domain of values D.,.
A sensor s is a component with domain D, C R, i.e. mod-
elling real-valued readings from a process. An actuator a is a
component with a discrete finite domain D,,. O

In this paper, if an actuator is a pump, we assume the
domain {on, off}, and if it is a motorised valve, we assume
the domain {open, closed}. Actuators with ‘partial’ positions
(e.g. 25% open) would require an appropriate discretisation.

For a given set of sensors or actuators, we refer to their
current states as their readings or configurations respectively.

Definition 2 (Readings; configurations). Given a set of sensors
(resp. actuators) C, the readings (resp. configurations) of C
are denoted as a set of pairs C C {(c,v) | c € C,v € D.}
containing exactly one pair per component, i.e. if (c,v;) € C
and {(c,v9) € C then v; = vy. We let C denote the set of all
possible readings/configurations C. O

Our definition of a CPS elaborates on how control, physical,
and component states all relate to each other. Note that the
transition functions can be left implicit if the targeted system
is available to be executed (as is the case for SWaT; Section V).

Definition 3 (Cyber-physical
physical system (CPS) P is a tuple of the form
(Qp,Xp,Sp,Ap,(Sp,dp,@p,Tp), where Q@Qp is a set
of control states, Xp is a set of states of the physical
process, Sp is a set of sensors, Ap is a set of actuators,
op: Qp X Sp — Qp X Ap is the logic of the controllers,

system). A cyber-

dp: Xp x Ap — Xp is a function characterising how the
physical process evolves after a fixed time interval 7p, and
0p : Xp — Sp is an observation function describing how
sensor readings are extracted from the state of the physical
process. O

Given a CPS P, a run of the system is a sequence
of the form (qo,z9) — (q1,21) — such that each
¢ € Qp, v; € Xp, and for every step (gi,7;) —

(¢i+1,Tit1), 6p(qi0p(xi)) = (qit1,Ap) with Ap € Ap

and dp(v;, Ap) = Tit1.

B. Test Strategies

CPS testing involves manipulating sensor readings and
actuator states according to a defined strategy. Our definition
consists of two parts. First, we define capabilities, which are
the particular manipulations that are possible. Second, we
define strategies, which are transition systems expressing how
the capabilities will be utilised, and the conditions of the
system that must be true for them to be able to do so. We
can specify a range of test strategies, including optimistic ones
that simply ‘try out’ various capabilities, or more sophisticated
ones that conduct manipulations based on the system state.

Capabilities are denoted as pairs of components and values
(we use square brackets to distinguish them from readings).
A pair [s,v] for sensor s and value v € D, indicates that the
tester is capable of spoofing the reading reported by s as v,
regardless of what the actual reading is. Analogously, a pair
[a, v] for actuator @ and value v € D, indicates that the tester
is capable of forcing actuator a into configuration v, regardless
of the commands that should be being issued to the actuator
at a given moment of the system’s execution.

Definition 4 (Capability). Let P be a CPS. A capability over
P is a pair [c,v], where ¢ is a component in Sp U Ap and
v € D.. O]

A set of capabilities may be infinite if the tester can
manipulate sensor values over a continuous domain. In such
cases, we use the notation [s, R] for sensor s and R C D; to
represent all capabilities [s, v] for v € R. For example, [s, Ng]
would represent [s, 0], [s, 1], [s, 2], and so on.

As an example, the set of capabilities {[P1o1,0mn],
[MVy01, close]} over SWaT expresses the ability to override
the configurations of two actuators in stage one. In particular,
the capabilities respectively express manipulations that cause
pump Pio; to switch on and motorised valve MV4p; to close.
Note that our model abstracts away from how these capabilities
are realised, specifying only that they can be.

Test strategies are defined as LTSs with labels of the form
v F . Here, v is a sensor condition that must be true for
the transition to fire, whereas ¢ is a capability condition that
constrains the capabilities that it is allowed to utilise.

Definition 5 (Sensor condition). Let P denote a CPS. A
sensor condition over P is a Boolean formula of simple linear
inequalities over the sensors Sp. The set of all possible sensor
conditions over P is denoted by Condp. Given a condition

v € Condp and physical state x € Xp, the valuation of
the condition, v* € B, is obtained by evaluating the Boolean
expression in the standard way, but with each sensor symbol
s interpreted as v such that (s, v) € 0p(x). O

As an example, the sensor condition v = LIT1p; > 250 A
LIT10; < 1100 over SWaT expresses that the level of tank one
is between 250mm and 1100mm, i.e. within its safe range.
Given a physical state x, the valuation of 4” is true if 250 <
v < 1100 for (LITy01,v) € Osyar(z), and false otherwise.

Capability conditions are simple Boolean expressions over
capability sets. We use the symbol ‘_’ to represent the capabil-
ities that are utilised when the transition is fired. Conditions
across multiple labels can be related using globally scoped
variables from a set Var, e.g. X € Var.

Definition 6 (Capability condition). Let Cap denote a set of
capabilities. A capability condition over Cap is a Boolean
formula of the form true, Exp; C Exp,, Exp; == Exp,,
p1Vpa, p1Apa, or 1. Here, Exp;, Exp, can be expressions
over variables in Var, subsets of Cap, or the symbol _, whereas
1, @2 are capability conditions. We let Condc,, denote
the set of all possible capability conditions over Cap. An
assignment is a function o : Var — 2%P mapping variables
to subsets of Cap. Given a capability condition ¢, a set of
capabilities Y € 2Car and an assignment «, the condition’s
valuation p¥* € B is obtained by evaluating the set and
Boolean expressions in the usual way, but with Y substituted
for _, and variables X € Var interpreted as «(X). O

For example, the capability condition ¢ = [Pyo1,0n] ¢ _
specifies that any combination of capabilities can be used,
so long as [Pio1, 0n] is not included. Note that we will use
y € Exp, Exp; Z Exp,, and Exp; # Exp, to respectively
abbreviate {y} C Exp, -Exp; C Exp,, and =(Exp; ==
Exp,). Furthermore, we let the capability set Y on its own
abbreviate the capability condition _ ==Y

Finally, we define strategies as LTSs, expressing the possible
sequences of capabilities that can be utilised by the tester.

Definition 7 (Test strategy). Let P denote a CPS and Cap a
set of capabilities over P. A test strategy for P and Cap is a
tuple 7 = (Q7, —7,i7) where Q7 is a set of states, —>7
C Q7 x (Condp x Condcap) X Q7 is a transition relation,
and i € Q7 is the initial state. A transition (r;, (77,), ;) €
—7 is visualised as an arrow from r; to r; with the label
v F ¢ (we may omit v or ¢ when they are true). O

For simplicity, we make some assumptions on the form of
strategies. First, we assume that it is always possible to fire
at least one transition, regardless of the state of the strategy
or the physical process. (One can always add a ‘do nothing’
transition that uses no capabilities.) Second, we assume that
between any pair of states r1, ro, there is at most one transition
from r; to ro. As a consequence, the sequence of transitions
fired can be uniquely determined from a sequence of states.
Finally, if a capability set is specified in a transition, then it
contains at most one capability per sensor/actuator.

] F {[P101, on], LIT101 < 1000 0

[MVy01, close]}
—> —>

Fig. 3. Three examples of test strategies for SWaT

LITi0; > 1000 F ¢

This definition allows us to capture a variety of test
strategies, as shown by the examples in Figure 3. The first
transition system ({a}, {(a, (true,_ == 0),a)},a) imple-
ments a null strategy. The sensor condition of the sole
transition is vacuously satisfied, but no capabilities are ever
utilised. The second transition system ({b}, {(b, (true, _ ==
{[P101, 0n], [MVy01, close]}),b)}, b) implements a sustained
test strategy. There is only ever one transition to fire (with a
condition that is always satisfied), and it utilises the capability
set {[P101,0n], [MV101, close|} for SWaT, i.e. overriding the
configurations of pump Pjo; (to switch it on) and motorised
valve MVy5; (to close it), sustaining this for the whole test.

Finally, let ¢ = [MVjo1,0pen] € _ AX == _. The
rightmost transition system in Figure 3 then implements a
conditional strategy. For as long as the actual sensor reading
of LIT4; remains under 1000mm, no capabilities are used. As
soon as that threshold is crossed during SWaT’s operation, the
transition from c to d is fired, and a set of capabilities is used
that satisfies ¢, i.e. includes at least the opening of motorised
valve MVyp;. Due to the global variable X in ¢, that same set
of capabilities is used for the rest of the test, i.e. the looping
transition incident to d.

C. Tests

Next, we define tests, the specific sequence of manipulations
derived from a strategy. A test can be thought of as a run of
the system in which the transitions of a strategy are fired and
tracked in parallel. The key difference is that the capabilities
specified in strategies result in modified observation functions
and modified actuator commands, and thus the resulting se-
quence can contain control and physical states that would not
normally be observed in a run of the system.

We begin by defining how the utilisation of capabilities
modifies the observation functions and actuator commands of
systems. Given a CPS P and a capability set Y, the usage of
sensor capabilities in Y is reflected by a modified observation
function, 97’;, defined the same as Op(x) for all z € Xp,
but with elements (s,v) replaced by (s,v’) if [s,v'] € Y.
Analogously, given a set of actuator configurations Ap € Ap,
the usage of actuator capabilities in Y is reflected by a
modified set of configurations, Z;;, obtained from Ap by
replacing elements (a, v) with {(a,v’) if [a,v'] € Y.

Intuitively, a test is a sequence of synchronised steps be-
tween the control/physical states of the CPS and the states
of a strategy. If a transition in the strategy is labelled with
capabilities, they are utilised in the step directly. If instead it
is labelled with - ¢, then any combination of capabilities that
satisfies ¢ is utilised.

Definition 8 (Test). Given a CPS P, a set of capabili-
ties Cap, and a strategy 7T, a fest on P is a sequence
of the form (qo,x0,70) —v, (q1,%1,71) —v, where
ro = 47 and each ¢; € Qp, x; € Xp, 7, € Qr, and
Y; € 2C2P Furthermore, there is an assignment « such that
for every (¢i—1,%i—1,7i-1) —v; (gi,2;,7i), there exists a
transition (r;—1, (Vi, pi),7:) € —7 with 77! = 4,93/0‘ =
true, 0p(gi—1,00 (2i—1)) = (¢, Ap), and dp(xi,l,zg) =

Given a CPS P, a strategy 7, and a festing goal v, €
Condp, a successful test for ~y, is a finite test (go, zo, i7) —v,
-+ =y, (¢n,Zn,) such that g™ is true. When analysing a
successful test, it is helpful to be able to reason about the
capability history, i.e. the trace of capability sets utilised.
Given a test t = (qO,]Jo,TQ) v (ql,l‘l,’l“1) =Y, s
the capability history of t, denoted m, is the corresponding
sequence of capability sets Y1Y5 - - -.

For a capability history m; = Y1Y5 - - -, we use the notation
me[k..l] with 1 < k < [to denote the slice of m; from
position k to [inclusive, i.e. Y3 Yj41 - -+ Y;—1Y;. Furthermore,
we define CSet(m;) = Uie{l,Q,m } Y; as the cumulative set of
all capabilities used in 7.

IV. IDENTIFYING EQUIVALENCE CLASSES OF TESTS

In this section, we address the problem of identifying classes
of equivalent tests and performing online updates of strategies.

First, we propose a number of equivalence classes for
expressing different ways that two tests can be related. In
particular, we define classes based on the particular capabilities
used and the order in which they are applied. These specific
classes are defined to support our case study (SWaT), but in
general, can be defined according to the user’s needs.

Second, we show how a strategy can be updated to exclude
the possibility of deriving further tests from a given class.
Implementing this step provides testers (e.g. fuzzers) a mech-
anism by which subsequent tests can be diversified once a
given equivalence class is suitably covered.

A. Equivalence Classes

We propose three initial equivalence classes that characterise
some informal common understandings of what makes two
tests the ‘same’. In particular, whether two tests both use a
given (causal) subset of capabilities, whether they use exactly
the same ones, or whether they use them in the same order.

The first of our classes considers two successful tests
equivalent if the capabilities they used include a given subset,
regardless of the order or context of their application. This
equivalence class is particularly useful for our implemented
fuzzer (Section V-B), which is able to approximate the causal
capabilities of a test, and thus can treat any other test that also
uses them as equivalent.

Note that these initial equivalence classes were proposed af-
ter examining the existing benchmark of manually constructed
SWaT attacks [19] and forming an intuition as to when attacks
with the same goal (e.g. overflow a tank) were considered

distinct by the benchmark’s designers. For ICSs and CPSs
outside of the water domain, the user may need to define
different equivalence classes if the specific context requires
different criteria to distinguish two tests.

Definition 9 (Capability-set equivalence). Let t1,%5 denote
two successful tests for goal «y,, and Y a set of capabilities.
We say that t1 and ty are Y -set equivalent, denoted t1 ~y to,
if t4 =9, or Y C CSet(me,) and Y C CSet (7,). O

A stronger version of this class considers two successful
tests to be equivalent if the tests utilised exactly the same
capabilities, regardless of when or how they were used.

Definition 10 (Strong capability-set equivalence). Let ¢, to
denote two successful tests for goal v,. We say that ¢; and
to are strong capability-set equivalent, denoted t; ~ to, if
CSet(mt,) = CSet(m,). O

Our third equivalence class considers two successful tests
to be equivalent if their capability histories are equal once
duplicate and trailing steps are removed. For example, suc-
cessful tests with histories PQQRPP and PPQRRP are
strong capability-order equivalent, as both contain the same
order of distinct sets—P() R P—when duplicates are removed.
Furthermore, if a successful test derives a sequence of distinct
sets with PQRP as its prefix (e.g. PQRPS), then that test
would be considered equivalent too.

Definition 11 (Strong capability-order equivalence). Let ¢, to
denote two successful tests for goal ,. We say that ¢; and ¢,
are capability-order equivalent, denoted t1 < to, if COrd(m,)
is a prefix of COrd(m,) (or vice versa). Here, we inductively
define COrd(Y1Y2Y3---) = Y7 - COrd(Y;Ygq1---) where -
denotes concatenation, k is chosen such that Y7 # Y}, and
for every k' in 1 < k' < k, Y1 = Y},. For finite capability
histories, COrd terminates on the empty sequence. O

As a notational convenience, for a given equivalence class
~, we let [t]. denote the (potentially infinite) set {t' | ¢’ ~ ¢}.

B. Excluding Classes of Tests

Given a strategy 7, a successful test ¢, and an equivalence
class ~, our goal is to transform 7 into a new strategy in which
the same tests can be derived except for those equivalent to
t, i.e. in [t]~. This mechanism allows fuzzers to diversify by
‘nudging’ the search towards tests that are not simply minor
permutations of £. Our algorithm involves two steps. First,
we construct a strategy Excl([t].) that can derive every test
excluding those that are equivalent to any in [¢].. Second,
we construct a parallel composition T || Excl([t]~) of the
strategies to return a new one that characterises all of the tests
possible in 7 except for those belonging to [¢]~.

We present the construction of Excl([t]...) for capability-set
equivalence (the others are available in the Appendix). In the
following, we use the notation L(7) to denote the language
of all finite capability histories that can be derived from 7.

Proposition 1 (Capability-set equivalence). Let ¢ denote a
successful test on CPS P, and Y C CSet(m;) a set of

}_p1¢,

Fpi,p2 & - Fpa ¢

e @
—»(90 T2 >(q2

Fig. 4. Constructing Excl([t]~,-) for capability set Y = {p1,p2}

70 Fpsé-

vbEps - 8
—>

Fig. 5. Example test strategy 7~

capabilities. A strategy Excl([t]~,) can be constructed such
that for every successful test ¢’ on P:

mp € L(Excl([t]~,)) if and only if ¢ & [t]~,

Construction. Suppose that Y = {y1,...,yn}. Then:
EXCI([t]’:Y) = ({q07 q1,-- -, q’n}7
{(qo, (true, (y1,- - yn &), q0)}

(U {(qo, (true,y; ¢), @), (@i, (true,y; ¢ 1), 1)},

i=1
q0)

where qo, q1, . .., q, are fresh strategy states. O

For example, suppose that m; = PPPQQQPPP is the
history of a successful test ¢, where P = {p;} and Q =
{p1,p2}. Let Y = {p1,pa}. Then Excl([t]~,) is as depicted
in Figure 4. Intuitively, the strategy characterises three types
of tests: those in which p; and py are never used; those in
which p; is used at least once but ps never is; and those in
which p, is used at least once but p; never is. In particular,
the strategy excludes any tests in which both p; and po are
used at some point (whether together or separately), i.e. the
class of all tests that are Y'-set equivalent to .

Next, we define a parallel composition operator || for strate-
gies. In particular, it allows us to construct 7 || Excl([t]~),
i.e. a strategy allowing all of the tests of 7 except those
equivalent to ¢ under ~.

Definition 12 (Strategy composition). Let P denote a CPS.
Suppose that 77, 75 are strategies for P with disjoint variables
and Q7 N Q7, = (. Then the composition of the strategies,
denoted 7y || 72, is the tuple (Q7; X Q7 —> 711725 (i3, 972))
where:

—r7e = 1002, 7%), (1 Ay, 1 A @2), (g5,71))
| (@i (11, 01),45) € —m
A Tk, (y2,92),11) € — 1} O
To illustrate, consider the strategy 7 of Figure 5, in which
any capability (except p3) may be used as soon as some sensor

condition v no longer holds. Suppose that (00 PPQQQQ is
the history of a successful test m; € L(T), where P = {p;}

v Epips € -

v p1,p2,ps & -

—>{(a,),

Fp2,ps € -

Fp2.ps & ,

Fig. 6. Composition 7 || Excl([t]~,.) for capability set Y = {p1,p2}

v Ep2,ps & -

and @Q = {p1,p2}. Let Y = {p1,p2}. Suppose that we want
to find tests that are not Y-set equivalent to ¢ (perhaps, for
example, because p;,py are causal; see Section V-B).

First, we construct Excl([t]~,) in Figure 4, which char-
acterises all tests that are not Y-set equivalent. Then, we
compose the strategies together, i.e. 7 | Excl([t]~,). Fig-
ure 6 depicts the result (with some simplifications), a strategy
characterising all the same tests as 7 except for those that
are Y-set equivalent to a. Note that PP)PPQQQQ can no
longer be derived as there are no paths allowing both p; and
pa; however, a test such as () PPPPP can still be derived,
as this is not Y-set equivalent to ¢ (and thus is ‘different’
under this equivalence class). Note that the capability ps was
forbidden in 7, and remains forbidden in the composition.

Theorem 1 (Composition). Let P denote a CPS, T a strategy,
and ¢ a successful test on P such that ¢ € L(7). For every
equivalence class ~ and successful test ¢’ on P:

€ L(T || Excl([t]~)) iff 7y € L(T) At & [t]~
A proof is given in the Appendix.

V. FINDING DIFFERENT TESTS BY GUIDED FUZZING

Next, we show how our formalism can be combined with
guided fuzzing approaches to automatically derive a set of
mutually non-equivalent tests from an initial strategy.

Our overall fuzzing approach is summarised in Figure 1 and
Algorithm 1: given some CPS P (e.g. the SWaT testbed), a
strategy T, a goal -y, (e.g. cause an overflow in tank T101), and
an equivalence class ~ (e.g. strong capability-set equivalence),
our fuzzing algorithm will find and return a set of tests that
are all mutually non-equivalent under ~.

The first step of the algorithm is to plan a finite sequence of
transitions (a ‘walk’) from strategy 7 to fire on CPS P. This
plan can be derived in a number of ways (e.g. randomly),
but we use a more intelligent approach which we describe
separately in Section V-A. We aim to derive a sequence of
transitions from 7 predicted to achieve the goal v, on P.

Once a plan is obtained, the fuzzer proceeds to fire the
transitions one-by-one, utilising the capabilities of each tran-
sition for the given time interval 7p. The test ¢ consists of the
sequence of control and physical states of P that result from
firing those transitions, with the sequence terminating when

Algorithm 1: Overall Guided Fuzzing Approach

Input: CPS P; strategy 7 ; goal 4, equivalence class ~
Output: Set of distinct tests for v,
1 Let tests := {};
2 repeat
3 Derive a sequence of transitions w = trytra - - - try, from 7 where
tr; = (ri—1, (vi, - == Y3),r:); [Alg. 2]
4 Let go, zo denote the current control/physical states of P;
5 Let t := (qo,Z0,70);
6 Leti:=1;
7 while ¢ < |w| do
8 Utilise capabilities Y; on P for 7p seconds;
9 Let q;, x; denote the current control/physical states of P;
10 if v;" then
1 t:=1t =y, (¢, %i,mi);

12 i:=1+1;

13 else

14 L i:=|w|+1;

15 if ¢ is successful for v, then

16 if causal fuzzing enabled then
17 [t:=tmin; [Alg 3]

18 tests := tests U t;

19 | T :=T | Excl([t]~);

20 until timeout;
21 return tests;

either the final transition of the plan is fired, or when the next
transition has a sensor condition that the physical state does not
satisfy. The test ¢ is successful if 4 is true of the final physical
state, in which case ¢ is added to the set of tests returned by
the fuzzing algorithm. (If causal fuzzing is enabled, non-causal
capabilities are pruned first—see Section V-B.)

Before the main loop of the algorithm is repeated, the test
strategy 7 is updated according to the algorithms of Section IV
so as to ensure that the next test identified is not equivalent.

A. Searching for a Potential Test

A key step of our overall fuzzing algorithm (Alg. 1, Line 3)
is deriving a walk from a strategy, i.e. planning a finite
sequence of transitions from a strategy 7 to fire on the real
system. In general, strategies are nondeterministic, so there
are many potential sequences: some states may have multiple
outgoing transitions, and there may be _-labelled transitions in
which different combinations of capabilities can be used. As
the search space is large, we propose an intelligent approach
that searches for a walk predicted to achieve the test goal .

Our approach for generating a plan is given in Algorithm 2.
Given a CPS P, strategy 7, objective function fwg, and
prediction model Mp, the algorithm returns a sequence of
transitions (a ‘walk’) in 7 that is predicted to maximise f,.
Here, f, : Sp — R is some function that maps the sensor
readings of P to a number, such that the larger that number is,
the ‘closer’ the physical state is to satisfying ~,. While these
objective functions must be defined, for our purposes, they
are typically quite simple (see the Appendix). Furthermore,
the algorithm requires a model Mp : Sp x Ap — Sp that
can predict how the current sensor readings will evolve over
a given time period 7p relative to some intended actuator
commands. This model could be in the form of a simulator
for P, or it could be a machine learning model (e.g. a neural
network) that was trained on some data logs [15], [16], [25].

Algorithm 2: Find a Potential Test from a Strategy

Input: CPS P; strategy 7'; objective function f. ; prediction model Mp
Output: Sequence of transitions w

1 Let walks := (); [empty sequence]

2 Let scores := ();

3 repeat

4 From 47, generate finite random walk trytry - - - tr, over transitions
tr; in T,

5 Replace ¢; in each tr; with Y; for some Y; satisfying ¢;;

6 walks := walks.append(tritry - - - try);

7 until timeout;

8 Let So, A denote P’s current sensor/actuator values;

9 foreach w € walks do

10 Let S := So;

1 Leti=1;

12 while ¢ < |w| do

13 Let A; denote the actuator commands resulting from Y5;
14 S := Mp(S,4;);

15 =1+ 1;

16 scores.append(fy, (Mp (S, A1)

17 Select a walk w from walks using roulette wheel selection with
corresponding scores in scores;
18 return walk w;

Intuitively, the algorithm begins by generating a large num-
ber of completely random finite walks through the strategy
T. Following this, the algorithm processes each random walk
in turn, predicting the sensor readings that would result from
actually firing the transitions relative to the current state of
the CPS. This final prediction is achieved by applying the
model Mp to each transition in turn, and then applying
the objective function f., to the final state. The higher the
number, the ‘closer’ the predicted effects of the walk are to
achieving the testing goal. Rather than simply returning the
walk with the highest score, we choose one using roulette
wheel selection [26] in order to ensure diversity in the tests.

B. Causally Different Tests

Thus far, our equivalence classes have not taken into account
the causality of capability usages. For example, a test that uses
capabilities Y and a test that uses capabilities Y U {p} (with
p € Y) would be considered different under strong capability-
set equivalence, even if p is totally irrelevant to the test’s
success (e.g. it modifies an actuator in an unrelated stage).

Our solution here is for equivalence classes to consider
only those events that were causal for the test’s success. As
computing the exact causal set is NP-complete in general [27],
[28], we propose an algorithm to efficiently approximate it.
In particular, given a successful test, our algorithm prunes
capability usages from it that are non-causal. To assess
causality, we analyse counterfactual conditionals of the form
“if p did not occur, then v, would not be achieved”, by
systematically replaying the test with individual capabilities
removed. Depending on the CPS P involved, this replay can
be performed on the system itself, or by using the prediction
model Mp from the previous steps (i.e. either a learnt model
or a high-fidelity simulator).

We can formalise this notion of ‘replaying’ a test
as a strategy. Given a test ¢ with capability history
T = Y1Ys---Y,, the replay strategy for m is T, =
({soy.--y8n}, {tr1,... tro,trg}, so), where each tr; =

Y Y Y

Fig. 7. Example of a replay strategy

Algorithm 3: Approximating the Causal Capabilities

Input: Successful test ¢ for v,
Output: Pruned successful test ¢min for v,

t Let tmin 1= 1;

2 Let causal := {};

3 repeat

4 Pick y, k, where 7y . [k..l] is a maximal slice of equal capability

sets, y is a capability in the set, and (y, k, 1) ¢ causal;
if y is causal in 7 . -~ from k to [then
6 | causal := causal U {(y, k,1)};

wn

else
L Let tmin denote the counterexample; [Def. 13]

® =

until Line 4 fails;
10 return t,in;

=)

(Si—la(truea_ ==)/i)asi) and trg = (sna(truea_ ==
(), sn). Figure 7, for example, depicts the replay strat-
egy constructed from a history 7, = YYY for ¥ =
{[P101, on], [MVy01, close]}.

The following definition formalises our notion of causality
in a successful test for 4. In particular, the usage of a
capability p across a given range of positions is causal if
removing p from those positions would mean the resulting test
no longer satisfies v,. This is assessed using replay strategies
in which p has been removed.

Definition 13 (Causal capability). Let t = (qo, x0,70) —v,
-+ denote a successful test for v, with capability history m; =
Y1Y5---Y,. Given a capability y and indices k,! such that
1 <k <I1<n,we say that y is causal in w; from k to l if
there does not exist a successful test for -y, from g,z using
replay strategy T\ (y,k,)- If such a test from qo, z¢ exists, we
call it the counterexample. Note that the sequence 7 \ (y, k, [)
is obtained from m; by substituting Y; \ {y} for Y; across
k<i<l.

With these concepts defined, Algorithm 3 describes a linear-
time approximation procedure that takes a successful test ¢ for
~v¢ and returns a successful test ¢, for 74 in which non-causal
capability usages have been removed. The algorithm operates
by repeatedly identifying a maximal subsequence of equal,
repeated capability set usages, and replaying the test with a
specific capability removed from each of the sets in that sub-
sequence. For example, for a sequence PPP(Q) with p € P,
the algorithm may replay the sequence P’ P’ P’'Q where P’ =
P\ {p}. If the test goal is still met, the capability usage was
not causal and can be pruned; if it is not, then it is recorded as
causal and other subsequences of capabilities are tested. When
no remaining capability can be pruned, the test is returned.

Proposition 2 (Over-approximation of causal capabilities).
Given a successful test ¢ for -4, Algorithm 3 returns a test con-
taining an over-approximation of its causal capabilities. [l

This is evident given that capabilities are only removed if there
exist counterexamples to them being causal. The algorithm’s
complexity is linear in the number of events in the trace.
Finally, to ensure that Algorithm 1 finds causally differ-
ent tests, we replace ¢t with t,,;, (Line 17), and then use
CSet(m,,,,)-equivalence as our equivalence class when updat-
ing 7 (Line 19). This ensures that any other tests identified by
the algorithm are not based on the same causal manipulations.

VI. EVALUATION ON SWAT

In this section, we evaluate the effectiveness of our formal-
isation and guided fuzzing approach with respect to SWaT, a
real-world testbed representative of ICSs in the water domain.
In particular, we ask:

RQ1: How many different tests can our approach automat-
ically find for each testing goal?

Does causal fuzzing effectively prune minor permu-
tations of otherwise equivalent tests?

How long does it take to find these tests?

Does causal fuzzing generate a more diverse set of
tests than the SWaT benchmark?

Through this evaluation, we aim to judge whether our formal
approach can really scale to a complex and real-world critical
infrastructure system from the water domain.

Our programs are available online [24], and details of the
implementation of our algorithms for SWaT are available in
the Appendix.

Experiment #1: RQI. Our first experiment assessed how
many different tests for SWaT our algorithms can find accord-
ing to two of our equivalence classes: strong capability-set
equivalence, and strong capability-order equivalence. These
classes only take into account patterns of capability usages:
they do not consider the causality of individual manipulations,
the importance of which is explored in our second experiment.

To achieve this, we initialised our implementation of the
algorithm on a ‘universal’ test strategy, i.e. a single node
incident to a transition permitting any capability usages. We
ran our program for one minute per goal (i.e. per unsafe state)
and equivalence class, using the SWaT simulator as our pre-
diction model for Algorithm 2, randomly generating an initial
configuration each time within normal operational ranges. For
test goals concerning all sensors except the LITs, we set the
time interval 7p as 15s, as the changes take effect very quickly
(no longer than 15s in preliminary experimentation). Given the
size of tanks, it takes somewhat longer to effect changes on
the LIT readings. Thus, we chose a separate time interval of
10 minutes for test goals concerning the LITs. Note that we
do not mix different time intervals in a single test: the value of
Tp is selected according to the test goal, and applied for each
capability usage in the test. (Future work could generalise this
in the formal model, perhaps facilitating equivalence classes
defined with respect to time.)

This value of 7p was determined in a simple pre-study:
we randomly generated an initial configuration within the
SWaT simulator’s normal operational ranges, searched for a
combination of actuators predicted to drive the LIT sensor to

RQ2:

RQ3:
RQ4:

an unsafe state, then set that combination in the simulator
and ran it 100 times, recording the median time taken to
reach the unsafe state. We found that no sensor required more
than 30 minutes, and with three transitions per walk (see the
Appendix), this suggested a time interval of 10 minutes. Note
that as part of this pre-study, we recreated one run per test goal
on the physical testbed to validate the time intervals identified
by experimenting on the simulator.

Our results are given in the first two rows of Table I. We
found that our implementation was able to quickly generate
large numbers of effective tests (as predicted by the simulator)
for every test goal, with each test distinct according to the
equivalence class definition used. As mentioned before, these
equivalence classes are non-causal, defined only over patterns
of the capabilities present, meaning that minor permutations
of the same test are not filtered out. Our next experiment con-
siders whether our causal-aware fuzzing solves this problem.

Experiment #2: RQ2-3. Our second experiment assesses
how many causally different tests for SWaT our algorithm can
find, and how much additional time our causality approxima-
tion adds in comparison to Experiment #1. In particular, we
searched for new tests on the basis of our Y-set equivalence
class, where Y is taken to be the set of causal events in the
test (as approximated by Algorithm 3). As for our previous
experiment, we started with a ‘universal’ test strategy that
could derive any possible combination of capabilities.

First, we used our program to search for a single test ¢
predicted to achieve the test goal. We then applied Algo-
rithm 3 to approximate the causal capabilities, pruning out
all others to get ¢y;y. For all non-LIT goals, we performed
this approximation directly on the testbed. Due to the time
requirements for LIT goals, we implemented those causality
tests using the simulator (on a random initial state within
normal operational ranges), except for the final minimised
sequence which was tested and verified on the real system.
Next, we parallel composed the strategy with Excl([t]~,),
where Y is taken as CSet(m,,). We repeated this process for
the next test found, which was guaranteed by our formalisation
not to contain this causal set of capabilities.

Our results are presented in the third row of Table I, and
reflect the total number of tests that could be found based on
different causality sets of capabilities. For each non-LIT goal,
the causality approximation algorithm took up to an hour per
test to complete on the testbed. For each LIT goal, in which the
final step was run on the testbed but others on the simulator,
the approximation took 10 minutes per test.

The number of different tests represents a significant reduc-
tion from those of the non-causal experiment, and illustrates
the power of causality-based equivalence classes in reducing
the search space. In fact, we found that 100% of the tests
from the previous experiment utilised at least one of the
causality sets identified in this one, meaning that they were
minor permutations of the key manipulations that made the
test succeed. The only exception was DPIT301-Low (x), for
which 97% of the tests utilised one of the three causality sets.
We believe that this was due to a poorer prediction model

TABLE I
RESULTS: NUMBER OF DIFFERENT TESTS (ACCORDING TO EQUIVALENCE CLASS) FOUND FOR EACH TESTING GOAL

Tanks (High) Tanks (Low) Flow (High) Flow (Low) Pr. (L)
E 2 g = 2 g = 2 g = g g g z g g
E E E£E|E E E|E E E|E E E &g E &£ £
— — — — — - = = = = = 53 = = = =)
Non- Strong capability-set equivalence 34,019 30,034 38,890 | 23,659 29,853 37,013 | 42,355 51,902 7,713 41,091 54,109 41,023 41,001 16,265 41,045 | 56,834
Causal | Strong capability-order equivalence || 40,199 28,100 34,191 | 19,908 27,118 44,213 | 54,239 56,122 10,902 | 46,124 54,213 49,008 42,123 23455 44,214 | 59,901
Causal Causal-set equivalence 3 6 2 2 2 4 1 1 1 1 2 2 1 1 1 3
Other SWaT dataset/benchmark 2 1 — 1 — 1 — — — — — — — — — —

for the sensor in our simulator, although the 3% of tests still
pushed the sensor reading towards the testing goal.

The approximated causality sets are given in the Appendix.
Upon manual inspection, we found these approximations to
be exact in all cases. We note that for some test goals, some
causality sets are subsets of others (e.g. for LIT301-High). The
reason for this is due to the initial configuration of the system
that the test is launched in: some tests based on those causal
sets will only succeed when the water tanks are at certain
levels (e.g. close to unsafe ranges).

Our approach avoids generating causally equivalent tests for
SWaT, pruning the test suite by 4 orders of magnitude, and is
practically implemented with a linear-time approximation.

Note that for other systems, one may wish to generate multiple
tests for each equivalence class. This could be achieved by
triggering the strategy update only after certain thresholds
(e.g. after generating m number of tests for a given class).
Due to resource limitations, we do not evaluate this alternative
approach for SWaT.

Experiment #3: RQ4. Finally, we assessed whether causal
fuzzing led to tests that achieve better coverage/diversity than
existing CPS fuzzers [15] and the SWaT benchmark [19], [20]
(Section II) by counting the number of tests that had the goal
of driving a sensor into an unsafe range. We chose the latter
as our benchmark as it is the most extensive publicly available
dataset for the SWaT testbed, and has become established as
a baseline in the critical infrastructure community (cited over
300 times since 2016, and downloaded by researchers in 82
countries [20].)

As shown in Table I, none of the tests in the benchmark
target the unsafe states of the FITs or DPIT, covering only the
unsafe states of LITs. Even limited to LITs, our causal fuzzer
still has more coverage/diversity: the benchmark does not
contain tests for the LIT401 (High) and LIT301 (Low) ranges,
and contains only 1-2 tests for the others. We note, however,
that some of the tests in the benchmark are incomparable to
ours as they do not target the manipulation of a physical state,
but rather just spoof a sensor (without physical effects); causal
fuzzing focuses only on tests that cause physical changes.

With the CPS fuzzer of [15], we are only able to find
one causally distinct test per each of our 16 test goals. This
is explained by its search approach, which is always guided
towards the ‘simplest’ causal capabilities. Thus, across these
goals, causal fuzzing finds 106% more causally different tests.

Causal fuzzing found 106% more causally dif-
ferent tests for SWaT than the most comparable
CPS fuzzer.

Threats to Validity. While SWaT is a fully operational
testbed, it is not as large as the plants it is based on,
meaning our results may not scale-up (this is difficult to assess
due to strict confidentiality). Furthermore, due to practical
constraints, our causality analysis (Algorithm 3) is partially
evaluated on the simulator (although the final results are all
validated on the actual testbed). As a result, the success of a
test may depend on the starting state/time: occasionally, the
system may not reach the unsafe state even for causal events,
thus causal events might be removed. This could be addressed
with a weaker requirement for being causal, e.g. an event could
be considered causal as long as there is a physical state change
towards the test goal.

We remark that our evaluation has focused on a real-world
ICS in the water domain. While our formalisms and algorithms
were designed with generality in mind, the results of these
experiments may not generalise to different kinds of CPSs
(e.g. drones). This should be explored in future work.

VII. RELATED WORK

In this section, we highlight how our approach relates to
other works involving fuzzing and test generation for CPSs
and ICSs in particular. While fuzzing has been applied to these
kinds of systems before, the aims are often quite different
(e.g. to find bugs in network protocols) in comparison to
ours, which is to provide a formal causality-guided way of
diversifying the test suite of an ICS.

Our approach was motivated by problems observed in the
original ‘CPS fuzzers’ developed in our previous work [15],
[16]. For example, in [15], a genetic algorithm is used to find
actuator configurations of SWaT that were predicted to drive
the system into unsafe physical states. The search attempts
to find some test of this kind as quickly as possible, which
in practice means that it will usually return the same test
for a given goal (typically the ‘simplest’ test, but perhaps
with some random non-causal manipulations as a result of
the optimisation). Our new fuzzer avoids this problem by
determining the causal manipulations and excluding the entire
class of causally equivalent classes from the search space,
ensuring that multiple causally different tests can be found
for a given goal (see e.g. Table I). We also found more tests
than the active learning-based fuzzer we proposed in [16],
although a direct comparison here is less fair as it focused

on manipulating low-level network packets (i.e. bit-vectors)
rather than high-level actuator commands.

Other CPS fuzzers are more domain-specific, focusing on
finding bugs in code or protocols, rather than sensor/actuator
manipulations. CyFuzz [29], for example, tests CPS tool
chain components that have been implemented in Simulink
by randomly generating input models. DeepFuzzSL [30] goes
further by guiding the generation with a neural network.
Fuzzing has also been applied to specific protocols in CPSs,
e.g. network protocols in order to test their intrusion detection
systems (e.g. [31]). Our work differs in that subsequent phases
of test generation adapt to ensure causally equivalent classes
of tests are excluded from the search.

Several works have applied the concept of causality for
security analyses of CPSs. In [32], Moradi et al. employed
a STRIDE model as a reference for classifying attacks. While
not explicitly built upon causality, their STRIDE model has a
certain form of in-built causality. In [33], Zhang et al. applies
causal models (defined based on maximum information coeffi-
cients and transfer entropy) to trace and detect ICS anomalies.
Outside the domain of CPSs, causality has been increasingly
applied to analyse or explain complex systems including in
Al [34]-[36]. In contrast to these works, we use causality as
a way to ensure diversity from our fuzzer.

Several authors have investigated the falsification of CPS
specifications. Given a CPS and a formal specification (e.g. in
some temporal logic), the idea is to search for counterexamples
that violate the specification. Tools such as S-TaLiRo [37]
use stochastic search methods to find simulation traces that
minimise a global robustness metric. Yamagata et al. [38] also
attempt to minimise how robustly specifications are satisfied
but drive the search using deep reinforcement learning. The
tests found by our work could be considered as similar to
the counterexamples of these works, although otherwise our
approach is quite different. Our approach may combine to help
find causally different ways of violating the same specification.

Outside of ICSs and CPSs, many fuzzers are available
for testing software, e.g. [39]-[43]. A common approach to
improve test generation is to specify the class of valid inputs
as a context-free grammar (CFG) [44], [45]. While it would
be feasible to specify our ‘strategies’ as CFGs, and use CFG-
guided fuzzers to generate tests, it may be difficult to exclude
equivalence classes of tests from a CFG in general (especially
as this requires handling language complements). It is also
worth noting that while CFGs typically express (single-step)
software inputs, our strategies express (multi-step) sequences
of system manipulations that are evaluated by observing
their effects on execution traces. Though our approach was
motivated by a specific application in diversifying ICS test
suites, it may general enough to adapt for fuzzing other types
of software in which communication can be manipulated,
e.g. distributed software systems.

Johnson et al. [46] proposed ‘Causal Testing’, an approach
that helps Java developers to identify causal information
associated with a failed test case by fuzzing with minimally
different inputs that do not exhibit the faulty behaviour. Our

approach differs in that they use causality to explain an
existing failure, while we use it to diversify the test suite.

VIII. CONCLUSION

Inspired by the limited diversity of existing test benchmarks
for ICSs such as SWaT, we developed a formal guided
fuzzing approach that allows us to systematically generate
causally different tests with respect to an equivalence class
and a given goal. By focusing on traces of sensor/actuator
manipulations, our approach can be applied without having to
construct any mathematical models of the targeted system’s
programs or physics. We assessed the utility of our approach
by implementing it in a fuzzer for a real-world water treatment
testbed, finding that it was able to identify multiple tests that
were successful for causally different reasons.

In future work, we would like to explore practical ways
of reducing the overhead of our online strategy update algo-
rithms. For example, as an alternative to excluding classes
of tests by construction, a guided fuzzer may be able to
incorporate test diversity (i.e. being outside known equivalence
classes) as a part of the ‘reward’ function when searching for
new tests. We will also determine whether our approach can
be applied to fuzzing different kinds of CPSs (e.g. drones),
or other software/systems in which the execution trace can
be influenced by intercepting some communication channel.
Finally, we will explore its applicability to model checking
(e.g. searching for different counterexamples) and composi-
tional verification (i.e. verifying the system under the presence
of different test strategies).

ACKNOWLEDGEMENTS

We are grateful to our anonymous referees who have helped
immensely in improving the presentation and positioning of
this paper. We would also like to thank Alexander Pretschner
and Eric Rothstein-Morris for insightful discussions at the
outset of this work. This research / project is supported
by the National Research Foundation, Singapore, under its
National Satellite of Excellence Programme “Design Science
and Technology for Secure Critical Infrastructure” (Award
Number: NSoE_DeST-SCI2019-0008). Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore.

REFERENCES

[1] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly
detection for a water treatment system using unsupervised machine
learning,” in Proc. IEEE International Conference on Data Mining
Workshops (ICDMW 2017). 1EEE, 2017, pp. 1058-1065.

[2] W. Aoudi, M. Iturbe, and M. Almgren, “Truth will out: Departure-based
process-level detection of stealthy attacks on control systems,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018). ACM, 2018, pp. 817-831.

[3] M. Kravchik and A. Shabtai, “Detecting cyber attacks in industrial
control systems using convolutional neural networks,” in Proc. Workshop
on Cyber-Physical Systems Security and PrivaCy (CPS-SPC 2018).
ACM, 2018, pp. 72-83.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Q. Lin, S. Adepu, S. Verwer, and A. Mathur, “TABOR: A graphi-
cal model-based approach for anomaly detection in industrial control
systems,” in Proc. Asia Conference on Computer and Communications
Security (AsiaCCS 2018). ACM, 2018, pp. 525-536.

M. A. M. Carrasco and C. Wu, “An unsupervised framework for anomaly
detection in a water treatment system,” in Proc. IEEE International
Conference On Machine Learning And Applications (ICMLA 2019).
IEEE, 2019, pp. 1298-1305.

S. Adepu, F. Brasser, L. Garcia, M. Rodler, L. Davi, A. Sadeghi,
and S. A. Zonouz, “Control behavior integrity for distributed cyber-
physical systems,” in Proc. ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS 2020). 1EEE, 2020, pp. 30-40.

C. M. Ahmed, A. P. Mathur, and M. Ochoa, “NoiSense Print: Detecting
data integrity attacks on sensor measurements using hardware-based
fingerprints,” ACM Transactions on Privacy and Security, vol. 24, no. 1,
2020.

Q. Gu, D. Formby, S. Ji, H. Cam, and R. A. Beyah, “Fingerprinting
for cyber-physical system security: Device physics matters too,” IEEE
Security & Privacy, vol. 16, no. 5, pp. 49-59, 2018.

M. Kneib and C. Huth, “Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018). ACM, 2018, pp. 787-800.

S. Adepu and A. Mathur, “Distributed attack detection in a water treat-
ment plant: Method and case study,” IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 1, pp. 86-99, 2021.

Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-physical system,” in
Proc. IEEE Symposium on Security and Privacy (S&P 2018). 1EEE
Computer Society, 2018, pp. 648—660.

H. Choi, W. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Xinyan, “Detecting attacks against robotic vehicles: A control in-
variant approach,” in Proc. ACM SIGSAC Conference on Computer and
Communications Security (CCS 2018). ACM, 2018, pp. 801-816.

J. Giraldo, D. I. Urbina, A. Cardenas, J. Valente, M. A. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-
based attack detection in cyber-physical systems,” ACM Computing
Surveys, vol. 51, no. 4, pp. 76:1-76:36, 2018.

C. H. Yoong, V. R. Palleti, R. R. Maiti, A. Silva, and C. M. Poskitt,
“Deriving invariant checkers for critical infrastructure using axiomatic
design principles,” Cybersecurity, vol. 4, no. 1, p. 6, 2021.

Y. Chen, C. M. Poskitt, J. Sun, S. Adepu, and F. Zhang, “Learning-
guided network fuzzing for testing cyber-physical system defences,”
in Proc. IEEE/ACM International Conference on Automated Software
Engineering (ASE 2019). 1EEE Computer Society, 2019, pp. 962-973.
Y. Chen, B. Xuan, C. M. Poskitt, J. Sun, and F. Zhang, “Active
fuzzing for testing and securing cyber-physical systems,” in Proc. ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2020). ACM, 2020, pp. 14-26.

H. Wijaya, M. Aniche, and A. Mathur, “Domain-based fuzzing for
supervised learning of anomaly detection in cyber-physical systems,”
in Proc. International Workshop on Engineering and Cybersecurity of
Critical Systems (EnCyCriS 2020). ACM, 2020, pp. 237-244.

H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “PGFUZZ:
Policy-guided fuzzing for robotic vehicles,” in Proc. Annual Network
and Distributed System Security Symposium (NDSS 2021). The Internet
Society, 2021.

J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to support
research in the design of secure water treatment systems,” in Proc. In-
ternational Conference on Critical Information Infrastructures Security
(CRITIS 2016), ser. LNCS, vol. 10242. Springer, 2016, pp. 88-99.
“iTrust Labs: Datasets,” https://itrust.sutd.edu.sg/itrust-labs_datasets/,
2023, accessed: February 2023.

J. Tretmans, “Test generation with inputs, outputs, and quiescence,” in
Proc. International Workshop on Tools and Algorithms for Construction
and Analysis of Systems (TACAS 1996), ser. LNCS, vol. 1055. Springer,
1996, pp. 127-146.

A. P. Mathur and N. O. Tippenhauer, “SWaT: a water treatment
testbed for research and training on ICS security,” in Proc. Interna-
tional Workshop on Cyber-physical Systems for Smart Water Networks
(CySWater@CPSWeek 2016). 1EEE Computer Society, 2016, pp. 31—
36.

“Secure Water Treatment (SWaT),” https://itrust.sutd.edu.sg/testbeds/
secure-water-treatment-swat/, 2023, accessed: February 2023.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

“Code for SWaT experiments,”
Causally-Different- Attacks/, 2023.

J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in cyber
physical systems using recurrent neural networks,” in Proc. International
Symposium on High Assurance Systems Engineering (HASE 2017).
IEEE, 2017, pp. 140-145.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. J. Trefler, “Explain-
ing counterexamples using causality,” in Proc. International Conference
on Computer Aided Verification (CAV 2009), ser. LNCS, vol. 5643.
Springer, 2009, pp. 94-108.

——, “Explaining counterexamples using causality,” Formal Methods in
System Design, vol. 40, no. 1, pp. 2040, 2012.

S. A. Chowdhury, T. T. Johnson, and C. Csallner, “CyFuzz: A differential
testing framework for cyber-physical systems development environ-
ments,” in Proc. Workshop on Design, Modeling and Evaluation of
Cyber Physical Systems (CyPhy 2016), ser. LNCS, vol. 10107. Springer,
2017, pp. 46-60.

S. L. Shrestha, S. A. Chowdhury, and C. Csallner, “DeepFuzzSL:
Generating models with deep learning to find bugs in the Simulink
toolchain,” in Proc. Workshop on Testing for Deep Learning and Deep
Learning for Testing (DeepTest 2020). ACM, 2020.

G. Vigna, W. K. Robertson, and D. Balzarotti, “Testing network-based
intrusion detection signatures using mutant exploits,” in Proc. ACM
Conference on Computer and Communications Security (CCS 2004).
ACM, 2004, pp. 21-30.

F. Moradi, S. A. Asadollah, A. Sedaghatbaf, A. Causevic, M. Sirjani,
and C. L. Talcott, “An actor-based approach for security analysis of
cyber-physical systems,” in Proc. International Conference on Formal
Methods for Industrial Critical Systems (FMCIS 2020), ser. LNCS, vol.
12327. Springer, 2020, pp. 130-147.

R. Zhang, Z. Cao, and K. Wu, “Tracing and detection of ICS anomalies
based on causality mutations,” in Proc. Information Technology and
Mechatronics Engineering Conference (ITOEC 2020), 2020, pp. 511—
517.

A. Ibrahim, T. Klesel, E. Zibaei, S. Kacianka, and A. Pretschner,
“Actual causality canvas: A general framework for explanation-based
socio-technical constructs,” in Proc. European Conference on Artificial
Intelligence (ECAI 2020), ser. Frontiers in Artificial Intelligence and
Applications, vol. 325. 10S Press, 2020, pp. 2978-2985.

J. Pearl, “The seven tools of causal inference, with reflections on
machine learning,” Communications of the ACM, vol. 62, no. 3, pp.
54-60, 2019.

A. Forney, J. Pearl, and E. Bareinboim, “Counterfactual data-fusion for
online reinforcement learners,” in Proc. International Conference on
Machine Learning (ICML 2017), ser. Proceedings of Machine Learning
Research, vol. 70. PMLR, 2017, pp. 1156-1164.

Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems,”
in Proc. International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2011), ser. LNCS, vol.
6605. Springer, 2011, pp. 254-257.

Y. Yamagata, S. Liu, T. Akazaki, Y. Duan, and J. Hao, “Falsification
of cyber-physical systems using deep reinforcement learning,” /EEE
Transactions on Software Engineering, vol. 47, no. 12, pp. 2823-2840,
2021.

M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2017, accessed: February 2023.

S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Proc. IEEE Symposium on Security and Privacy (S&P
2015). IEEE Computer Society, 2015, pp. 725-741.

M. Bohme, V. Pham, M. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proc. SIGSAC Conference on Computer and
Communications Security (CCS 2017). ACM, 2017, pp. 2329-2344.
Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su,
“Enfuzz: Ensemble fuzzing with seed synchronization among diverse
fuzzers,” in Proc. USENIX Security Symposium (USENIX Security 2019).
USENIX Association, 2019, pp. 1967-1983.

T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz:
an efficient adaptive fuzzer for solidity smart contracts,” in Proc.
International Conference on Software Engineering (ICSE 2020). ACM,
2020, pp. 778-788.

https://github.com/yuqiChen94/

[44] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2008). ACM, 2008, pp.
206-215.

[45] A. Zeller, R. Gopinath, M. Bohme, G. Fraser, and C. Holler,
“The fuzzing book.” CISPA Helmholtz Center for Information
Security, 2023, accessed: February 2023. [Online]. Available: https:
/Iwww.fuzzingbook.org/

[46] B. Johnson, Y. Brun, and A. Meliou, “Causal testing: understanding
defects’ root causes,” in Proc. International Conference on Software
Engineering (ICSE 2020). ACM, 2020, pp. 87-99.

[47] A. Ruscito, “pycomm,” https://github.com/ruscito/pycomm, 2019, ac-
cessed: February 2023.

APPENDIX
EQUIVALENCE CLASS CONSTRUCTIONS

Proposition 3 (Strong capability-set equivalence). Let ¢ de-
note a successful test on CPS P. A strategy Excl([¢]~) can
be constructed such that for every successful test ¢’ on P:

mpy € L(Excl([t]~)) if and only if ¢’ & [t]~

Construction. Suppose that CSet(m) = {y1, ...
define Y* = 2¢5¢t(m) \ CSet(m;). Then,

,Yn}- Let us

Excl([t]~) =
{a.} U{ay Y €Y7},
(gx, (true, _, true), ¢.)}
U {(av, (true, _\ CSet(m;) # 0),q.)}

(
{

Yevy*
U {((JY7 (truea Y/ \ Y g _/_ g Y/)a qY’)}v
Y,Y'ey*
ycy'
@)
where ¢, and each gy are fresh strategy states. O

For example, suppose that m; = PPPQQQPPP is the
history of a successful test, where P = {p1}, Q@ = {p1,p2},
and thus CSet(m;) = {p1,p2}. Then Excl([t]~) is as depicted
in Figure 8. Note that the constraints of some transitions have
been simplified. Intuitively, the strategy characterises tests that
do not involve exactly the same set of capabilities as . This
can be achieved by using strictly more capabilities than t,
or by using strictly fewer capabilities than ¢. In particular,
the strategy excludes any tests achieved by using exactly
the capabilities p; and ps (whether together or in different
transitions) and no others.

Proposition 4 (Strong capability-order equivalence). Let ¢ be
a successful test on CPS P. A strategy Excl([t]2) can be
constructed such that for every successful test ¢’ on P:

mpy € L(Excl([t]z)) if and only if ¢ & [t]

Construction. Suppose that COrd(m;) = Y1Y5...Y}. Define:

Exel(t]) =
({QmQh .. -7%}7
{(qo, (true, _ # Y1), qx), (qr, (true, true), qx)}
k-1
U {(gi=1, (true, _ == V), 4;), (¢, (true, _ == Y3), q),

(qia(truea_ 7& }/l/_ 7é }/7;+1)7q/€)}7
q0)

where qo, q1,- .., qr are fresh strategy states. O

For example, suppose that m; = PPPQQQPPP is the
history of a successful test, where P = {p1}, Q = {p1,p2},
and COrd(m,) = PQP. Then Excl([t]z) is as depicted in
Figure 8. The strategy characterises tests that do not consist of
usages of P, followed by usages of (), followed by usages of
P again. Intuitively, it achieves this by using states ¢; and gs
to ‘track’ the usages of Ps followed by ()s, with transitions
to g3 whenever a capability is used that makes it impossible
to achieve the P..QQ..P.. pattern. Note that from ¢o there are

no transitions supporting the usage of P.

PROOF OF THEOREM 1

Proof Sketch. First, it is required to show that a capability
history 7 = Y1YoY5--- is in L(T || Excl([t]~)) if and
only if 7y € L(T) and mp € L(Excl([t]~)). This can be
obtained by showing that any test trace in 7 || Excl([¢]~)
that derives my can be mapped to a corresponding trace of
states and transitions in 7 and Excl([t].) (and vice versa).
This is evident from the definition of | as the composed
strategy explicitly tracks (disjoint) state identifiers, combines
all possible pairs of transitions, and fully synchronises on
the steps of both strategies. The result is then obtained by
appealing to the relevant Proposition of the equivalence class
defined by the user (e.g. Propositions 1, 3, and 4), i.e. that
7y € L(Excl([t]~)) if and only if ¢’ & [t].. O

IMPLEMENTATION FOR SWAT

The formalisation, equivalence classes, and algorithms we
have presented are completely general: they can be applied
to any test scenario characterised as performing sequences of
sensor/actuator manipulations, and they do not require any
modelling of the targeted CPS (which would be difficult to
do in general, owing to the presence of physical processes).
Our theory can be applied to a real system by identifying
the sensors/actuators a tester can manipulate (along with
their possible readings/configurations), an equivalence class of
interest, and a test strategy of interest. Furthermore, in order to
guide the search for effective tests from a strategy, it requires
some black box predictive model of the system’s behaviour
(e.g. a simulator, or a neural network trained on sensor/actuator
data of the real system).

To demonstrate the effectiveness of our theory in practice,
we implemented causal fuzzing for SWaT as a suite of Python
scripts, which are available online [24]. Our implementation

Fig. 8. Left: constructing Excl([t]~) for CSet(m¢) = {p1, p2}; Right: Excl([t]) for COrd(m) = PQP

is able to handle strong capability-set equivalence, strong
capability-order equivalence, most importantly, Y -set equiv-
alence, where Y is taken to be the causal capabilities of an
identified test.

In Algorithm 2, to constrain the search space, we limit
walks to three transitions, but use a longer fixed time interval
of 10 minutes (determined experimentally; Section VI). As
our prediction model, we make use of a high-fidelity simula-
tor for SWaT [24], but note that other kinds of prediction
models based on machine learning are available too [15],
[16], [25]. We define simple objective functions in terms
of the known safe operational ranges of sensors (similar to
the fuzzer of [15]). To test whether a manipulation is causal
(Algorithm 3), we make use of the actual testbed for all tests
except those that target tank over- or underflows. For those
tests, we use the simulator to avoid resource wastage, testing
only the final output ¢,,;,, on the real system.

Once a potential test has been identified and pruned, the rest
of Algorithm 1 (i.e. identifying whether the potential test is
actually successful) is executed on the SWaT testbed itself. To
assess the effects of utilising capabilities, we fuzz the sensor
readings and actuator commands accordingly over the network
using the pycomm [47] package.

CAUSALLY DIFFERENT TESTS FOUND

Table II lists the causality sets identified in our evaluation
(Section VI; Experiment #2).

TABLE I

CAUSAL CAPABILITY SETS IN TESTS IDENTIFIED BY OUR FUZZER

Test Goal

[[Causal Capability Sets

FIT101 (High)

{IMV101, open]}

FIT201 (High)

{IMV201, open], [P101, on], [P102, on]}

FIT601 (High)

{[MV301, open], [MV303, open], [MV502, open],
[P602, on]}

FITI01 (Low)

{IMV101, close]}

FIT201 (Low)

{IMV201, close]}
{[P101, off], [P102, off]}

FIT301 (Low)

{IMV302, close]}
{[P301, off], [P302, Ofﬂ}

FIT401 (Low)

{IMV501, close]}

FIT501 (Low)

{IMV501, close], [MV503, close], [MV504, close]}

FIT601 (Low)

{[P602, off]}

DPIT301 (Low)

{IMV301, open], [MV303, open], [P602, on]}
{IMV302, close]}
{[P301, off], [P302, off]}

LITI01 (High)

{[MV101, open]}
{IMV101, open], [P101, off], [P102, off]}
{IMV101, open], [MV201, close]}

LIT301 (High)

{[MV201, open], [P101, on]}

{IMV201, open], [P102, on]}

{IMV201, open], [P101, on], [P301, off], [P302, off]}
{IMV201, open], [P102, on], [P301, off], [P302, off]}
{IMV201, open], [P101, on], [MV302, close]}
{IMV201, open], [P102, on], [MV302, close]}

LIT401 (High)

{IMV302, open], [P301, on]}
{IMV302, open], [P302, on]}

LITI01 (Low)

{IMV101, close], [MV201, open], [P101, on]}
{IMV101, close], [MV201, open], [P102, on]}

LIT301 (Low)

{IMV201, close], [MV302, open], [P301, on]}
{IMV201, close], [MV302, open], [P302, on]}

LIT401 (Low)

{IMV302, close], [P401, on]}

{[P301, off], [P302, off], [P401, on]}
{IMV302, close], [P402, on]}

{[P301, off], [P302, off], [P402, open]}

