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Abstract—Immediate feedback has been shown to improve
student learning. In programming courses, immediate, automated
feedback is typically provided in the form of pre-defined test
cases run by a submission platform. While these are excellent for
highlighting the presence of logical errors, they do not provide
novice programmers enough scaffolding to help them identify
where an error is or how to fix it. To address this, several
tools have been developed that provide richer feedback in the
form of program repairs. Studies of such tools, however, tend to
focus more on whether correct repairs can be generated, rather
than how novices are using them. In this paper, we describe our
experience of using CLARA, an automated repair tool, to provide
feedback to novices. First, we extended CLARA to support a
larger subset of the Python language, before integrating it with
the Jupyter Notebooks used for our programming exercises.
Second, we devised a preliminary study in which students tackled
programming problems with and without support of the tool
using the ‘think aloud’ protocol. We found that novices often
struggled to understand the proposed repairs, echoing the well-
known challenge to understand compiler/interpreter messages.
Furthermore, we found that students valued being told where
a fix was needed—without necessarily the fix itself—suggesting
that ‘less may be more’ from a pedagogical perspective.
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I. INTRODUCTION

One of the most common methods of assessing students
in computing is practical work, where students are tasked to
solve programming problems [1]. The large enrollments in
computer science courses, however, make it more challenging
for faculty to provide one-to-one feedback to students on their
programming assignments. During such practical work, novice
programmers often encounter feedback on their solutions
through compiler or interpreter error messages, such as those
arising from syntax errors, and information from automated
assessment tools, such as the number of test cases passed
or failed [2]. While proficient programmers are able to make
use of test cases to identify some logical flaws or boundary
case bugs in their programs, novice programmers often find
it difficult to do so [3]. There is a need, then, for novice
programmers to be guided through their logical errors and on
how to fix them. Are we able to automatically and accurately
generate this feedback for novice programmers?

One definition of feedback is “information communicated
to the learner that is intended to modify his or her thinking or
behaviour for the purpose of improving learning” [4]. For error
messages, as well as messages from automated assessment

tools, Keuning et al. classifies such feedback under the cate-
gory of “Knowledge about Mistakes” [5]. However, in spite
of the fact that information contained in error messages can
lead programmers to a correct solution, it is known that novice
programmers find error messages challenging to interpret and
apply to their work [6]. Keuning et al. describes another
category of feedback as “Knowledge on how to proceed”,
which provides learners information on how to get towards
a solution [5]. Paiva et al. describes three types of tools that
provide such feedback, the first of which recommends “a
possible correction when the learner encounters a bug” [7].
Automated program repair (APR) tools, which can provide
hints to novice programmers on how their solution can be
corrected, fall under this category. Examples of such tools
include CLARA [8], Refactory [9], AssignmentMentor [10],
and Verifix [11]. While the effectiveness of these APR tools
at constructing patches has been experimentally assessed, less
attention has been given to how these fix suggestions are used
by novice programmers in their learning.

In this paper, we report on our experience of using one such
APR tool, CLARA [8], to support the teaching of program-
ming to novices. First, we extended the original software to
‘CLARA-S’ (for CLARA Service), which covers more of the
Python language (e.g. import statements, lambda functions,
object-orientation) and exposes CLARA’s functionality over a
REST API. Next, we integrated CLARA-S into the Jupyter
Notebooks used by our students in their programming exer-
cises, allowing them to request a fix by clicking a button.
Finally, we designed a preliminary study to explore how
students were using the feedback generated by CLARA-S.

II. RELATED WORK

Singh et al. proposed an APR tool for introductory pro-
gramming assignments [12]. This feedback generator requires
instructors to specify the correct solution together with a list
of rules to apply when correcting errors. The APR tool of
Parihar et al. [13] also uses rules targeted at various compile-
time errors in C. Others have used machine learning techniques
on existing student solutions (e.g. from previous course runs).
For example, clustering can be used to group correct solutions
as input for repair programs [8], [14]. Such tools find the
‘nearest’ cluster of correct solutions and propose a repair
based on it. CLARA, the APR tool used in this report, applies
the clustering approach to C and Python programs, and has



achieved a repair rate of 97.44% over four thousand incorrect
Python programs [8].

Developing APR tools continues to be an active area of
research with a diversity of approaches [7]. The technical
approach taken by Refactory is to refactor all student solutions
to match the structure of a single correct solution [9]. Other
tools include AP-Coach [15], AssignmentMender [10] and
Verifix [11], all of which use different technical approaches.
AP-Coach, for example, uses code similarity techniques to find
the closest reference solution, then generates feedback in the
form of comments and AI-generated pseudocode.

Some preliminary user studies have been described by
authors of APR tools. For CLARA [8], the average rating
of 52 participants was 3.4 out of 5, with 5 indicating that the
feedback provided was “most useful”. While textual feedback
was collected, it was not provided by the study. It was reported
that more students found the program repair feedback gener-
ated by AssignmentMender helpful compared to the feedback
generated by Refactory [10]. A survey was designed showing
instances of an incorrect program and the repair provided by
Verifix [11]. This was administered to 14 tutors of introductory
programming courses who gave generally positive feedback
on the tool. While encouraging, these studies give limited
guidance to practitioners who may wish to use APR tools.

Two studies attempted to understand the benefit of APR
tools for novice programmers [11], [16]. Ahmed et al. [11]
used a data-driven approach to compare the use of automated
feedback tools to human tutors in two cohorts of students,
and concluded that the benefit of automated feedback tools
was primarily to provide an alternative source of feedback in
the absence of a human tutor. However, no pedagogical benefit
was found: under exam conditions, students in the automated
tools cohort were not seen to fix errors faster than the students
in the human tutors cohort. Reis et al. [16] assigned 42
novices into three groups, tasking them to solve programming
problems. All three groups had access to test cases, with the
second having access to CLARA, and the third having access
to PythonTutor (a web-based visualiser of Python program
executions [17]). Students who had access to CLARA solved
the problems faster and rated the feedback as more useful, but
there was no difference in performance in a programming post-
test between the CLARA group and test cases (only) group.

III. CONTEXT

Our Courses. Our intervention took place at the Singa-
pore University of Technology and Design, which requires all
students to take three terms of common courses. This includes
two courses on programming, both taught using Python. The
first course is compulsory for all students in their first term
(Term 1), while the other is an elective taken in their third term
(Term 3), and is strongly recommended for those choosing to
major in computer science.

The Term 1 course focuses on basic syntax, control struc-
tures, and some object-oriented programming. The Term 3
course covers basic sorting algorithms, data structures, and
further topics on object-oriented programming. (It can thus be

Fig. 1. Screenshot of our Jupyter extension to call CLARA

assumed that students who completed Term 3 are generally
more proficient at programming.) Both courses utilise Jupyter
Notebook for their programming assignments.

CLARA-S. The original version of CLARA [8] supports
only a subset of Python and must be run in a Linux terminal.
We modified its parser so that it could additionally support
import statements, lambda functions, and some object-oriented
programming features. In particular, this enables CLARA to
parse programming assignments that import and utilise built-in
functions from other libraries.

Using FastAPI, we exposed CLARA as a RESTful web
service [18], allowing it to be invoked over HTTP requests
from any other application. Furthermore, we developed a
Jupyter Notebook extension [19], allowing students to call the
CLARA service using a button in our programming exercises.
We refer to the overall solution as ‘CLARA-S’ (for CLARA
Service); the source code is available online [20]. A screenshot
of our extension is shown in Fig. 1. At the top, we highlight the
button that students press to trigger feedback while working
on a programming exercise. At the bottom, we highlight some
feedback from CLARA-S, which the extension automatically
inserts into a new cell of the Jupyter Notebook.

CLARA-S requires a repository of correct solutions [8],
which its underlying mechanism then reduces into a cluster
representation (each cluster intuitively representing a different
solution approach). For instructors, one way to populate this
repository is to utilise the (correct) solutions submitted to
programming assignments in previous runs of the course.
Repair feedback is then generated based on the minimum
distance to one of those cluster representations. From a stu-
dent’s point of view, they access CLARA-S directly from their
Jupyter notebook—in particular, an online platform where the
notebook has been set up containing questions in markdown,
as well as starter code and test cases in some code cells.
Students are then able to generate feedback for their incorrect
solutions by choosing the function name and clicking the
integrated help button in the interface (Fig. 1), after which
the feedback appears in a new cell.

IV. STUDY PROTOCOL

We designed a preliminary study to gain some insights
into how helpful our students find the feedback provided by



Fig. 2. Study protocol for the two groups of students, Group A and B. Each
participant is given 30 mins for each programming task, P1 and P2. Group A
uses CLARA-S for P2, whereas Group B uses it for P1

CLARA-S, and to help us understand where further research
and tool improvements should be focused. Our study protocol
is shown in Fig. 2. First, the participants were randomly split
into two groups (A and B). In each group, participants started
with a warm-up exercise before being tasked to solve two
programming problems in sequence: P1 and P2. Participants
in Group A first attempted P1 without being allowed to use
CLARA-S, followed by P2 with CLARA-S. In Group B, this
sequence is reversed: participants attempted P1 with CLARA-
S followed by P2 without. Participants were not forced to use
CLARA-S when it was allowed.

P1 and P2 were chosen to be of novice and intermediate
difficulty respectively: P1 required implementing a function
that finds the position of an item in a sorted array, whereas
P2 required implementing base 10 addition for numbers rep-
resented as linked lists of digits. As CLARA-S needs to be
provided some correct solutions for clustering, the research
team independently solved the exercises and produced several
different correct solutions. CLARA-S reduced these correct
solutions to three clusters for task P1 and four for task P2.

The participants were to attempt P1 and P2 using pair-
programming together with a research assistant. Participants
were instructed (through a warm-up exercise) to use a think-
aloud protocol, i.e. to verbalise their thoughts in solving
the problem to the research assistant, who would then write
the code. The research assistant was not allowed to provide
any help if the participants experienced difficulties regarding
logical or semantic errors, but was allowed to clarify language
syntax. This was to isolate participants’ difficulties when
using CLARA-S so that feedback is only given for logical
or semantic errors (our focus). The participants were given a
maximum of 30 minutes per task and could stop at any time.

At the end of each programming problem, the participants
were asked to fill in an online survey. The survey was based
on [21] and [22]. The first set of questions was used to
measure the computing self-efficacy of the participants. The
second set of questions was used to measure problem solving
confidence using a validated instrument designed by Gok [22].
As Gok’s instrument was originally designed for physics
problem-solving, we adapted the wording of the questions to
suit the programming problem-solving context. In addition,
if participants had just solved P1 or P2 with the help of

TABLE I
NORMALISED LIKERT SCORES WITH RESPECT TO BACKGROUND

Question Novice Intermediate
The programming tasks are difficult 0.19 -1.06
I have enough time to complete the tasks -0.25 1.35

CLARA-S, the survey contained additional questions on their
experience and perception of using it.

In order for the participants to get used to the think-
aloud protocol [23] and pair programming, both groups of
participants began with a warm-up exercise. In this warm-
up exercise, the participants were given three simple pro-
gramming tasks. For the first task, the research assistant
demonstrated the think-aloud and pair programming protocols.
For the next two tasks, the participants solved the problems by
trying these protocols themselves. The outcome of the warm-
up exercises were used by the research assistant to identify the
programming background of the participants. The participants
were categorised as ‘novice’, ‘intermediate’, or ‘advanced’
according to how they solved the warm-up exercises.

We invited students taking our Term 1 and Term 3 pro-
gramming courses (in our academic calendar, these terms
coincide) to take part in our study. Participation was explicitly
voluntarily. We obtained 20 participants, who were grouped
randomly into Group A and Group B (10 in each). Group
A consisted of 5 novice and 5 intermediate programmers,
whereas Group B consisted of 3 and 7 respectively.

V. RESULTS AND DISCUSSION

Usage of CLARA-S. We observed in our preliminary study
that when given the option, seven participants from Group A
and five from Group B chose to use CLARA-S. The largest
drop in the latter came from intermediate programmers: only
two of the seven intermediate programmers used it, with the
remainder able to complete the problem without hints. A
likely explanation is that task was simple enough for those
programmers to solve without needing feedback. Another
factor could be due to the nature of the study: participants
may have been driven to demonstrate that they were strong
enough to solve the problems without any assistance.

Table I summarises the survey questions on task difficulty
according to background. We use normalised Likert scores,
where -2.0 (resp. +2.0) indicates universal strong disgreement
(resp. agreement). Novice programmers slightly agreed that
the tasks were difficult, whereas the intermediate programmers
found them easier (explaining why fewer required fixes).
Similarly, while novices felt they did not have enough time,
intermediate programmers tended to agree that they did. We
also measured the time taken by participants. The average
duration for P1 was 18.05 minutes; for P2, it was 24.50
minutes. This suggests that both tasks were of moderate
difficulty, with P2 requiring more thought (as expected).

Helpfulness of CLARA-S. Fig. 3 summarises the survey
results, categorised by background, regarding the usefulness
of the feedback (i.e. repairs) suggested by CLARA-S. It



Restricted

Restricted

The automated feedback system has made me more aware 
of the need to write correct code. 

The automated feedback has forced me to implement 
programs more carefully.

The automated feedback system can help me improve as a 
programmer. 

It would have been useful to use the automated feedback 
system from the first programming course. 

I learn something when using 
the automated feedbacks. 

Using the automated feedback in the course 
would be interesting. 

The feedback given by 
the automated feedback is adequate. 
The automated feedbacks help me to 

troubleshoot/debug my errors. 
The automated feedbacks help me to 

solve the programming problem. 
The automated feedback system helps to measure my 

current progress in solving a programming problem. 
The automated feedbacks has 

been a waste of time. 
In general, the automated feedback system 

is a useful tool. 
I would like to use the automated feedback system 

or a similar tool in future. 
I value the fact that a tool like the automated feedback 

system returns feedback immediately about my logical errors. 
Using the automated feedback system in the course can 

make learning programming to be more interesting. 
Using the automated feedback system in the course can 

make learning programming to be more interactive. 
Using the automated feedback system in the course can 

make learning programming to be more independent.

Novice Intermediate 
Question

Fig. 3. Feedback on the use of CLARA-S with respect to programming background. The numbers in the bars are percentages

Fig. 4. Example of CLARA-S output seen by a participant

can be seen that participants with intermediate programming
backgrounds tended to give more positive feedback on the tool
compared to novice programmers: while novice programmers
were divided 50-50 on whether the feedback given is adequate,
the intermediate programmers were more positive on this
aspect. Though both groups disagree that the APR tool is
a waste of time, we can see that a higher percentage of
novice programmers chose ‘strongly disagree’. This means
amidst its drawbacks, the novice programmers still perceive
that CLARA-S helps them in some way. When categorised by
Group A vs. B, the results show that 86% of Group A—who
were allowed to use CLARA-S for the more challenging task,
P2—found the tool useful compared to just 14% of Group B.

Deciphering the Feedback. Three of the novice program-
mers reported that they found it difficult to decipher the feed-
back messages given by CLARA-S. We followed-up with them
in an informal interview, receiving the following comment:

“When I got an error, I tried to use [CLARA-S]. I did not
understand the feedback.”

An example of CLARA-S output is shown in Fig. 4. The
caret symbol in the output is an additional feature we added
on top of CLARA to show which parts of the line to repair.

As can be seen, even though CLARA specifies the repair to
be done, the message can be cryptic for novice programmers.
In particular, CLARA gives its feedback via an internal repre-
sentation (e.g. iter#0 and ind#0) rather than using exactly
the code written by the student. The problem is analogous
to the issues novices face interpreting compiler/interpreter
message for syntax errors. Several studies explore how to make
these error messages more novice-friendly (e.g. [24]), and we
believe that the results of these studies as well as resugaring
techniques [25] may be useful to incorporate into APR tools
that help novices fix semantic/logical errors.

Most participants only used the feedback system when they
got stuck, while a few participants used it to check their logic
and answers. Most students used it only when they could not
proceed, as shown in the following comments:

“When I could not solve the questions anymore, I started
using the automated system.”
“I made use of it when I felt like I was stuck and needed
more help.”

Some used it immediately upon a failing test case:

“If my code is running into an error, or not passing the
asserts. I would press feedback and see the suggestions.”

One participant made use of CLARA-S to guide his imple-
mentation. He knew he required a loop, so started writing the
structure of the loop and fed it into CLARA-S to get feedback
on the detail of the for-loop code:

“I created a simple for loop function (that would mimic
what is expected of the final function) in order to get the
automated system to feed me answers and use the feedback
until correct solution is reached.”



Location vs. Fix. An interesting finding from the study is
that students found the current version of CLARA-S most
helpful for pointing out where the logical error is, rather than
what the solution should be.

“It is good that there are arrows pointing to which part
I should change. But the alternative solution was very
different from mine, it was quite confusing.”

The participant above found the feedback to be helpful for
locating which part they needed to change, but the proposed
repair caused confusion. This is especially true for novice
programmers and can be seen by the ambivalent result of the
survey on whether the feedback is adequate (Fig. 3). This
could also due to the limited number of correct solutions
fed into the system: better feedback may be provided with
additional cluster representations.

“It’s a bit confusing, possibly due to first time usage.
Hunch is that if it’s closer to the solution it’s easier to use.”
“I think it is good to guide students what to do. But I feel
that it restricts to one certain solution only.”

Reflections. So what can we conclude from our experience
of using CLARA-S? First, we have observed that automated
repair suggestions provide useful feedback for students with
different backgrounds, especially for more complex tasks. The
feedback message seems to benefit intermediate programmers
more than the novice programmers, likely due to the cryptic
nature of some feedback generated by the system, echoing
the similar challenges novices face with compiler messages.
Nonetheless, students valued being shown where a fix needed
to be applied, i.e. the source of the logical error.

Another benefit that we see from this system is for in-
structors to speedily localise logical errors. When grading
buggy solutions or consulting with students, instructors can
use CLARA-S to immediately hone in on the critical part of
the code. In other words, the tool’s feedback can still be used
effectively, even in instances where the student cannot decipher
it independently. This aligns with Yi et al. [26], who observed
that repairs helped teaching assistants grade more efficiently.

Finally, from a pedagogical perspective, we would like
students to be able to find the solutions themselves without
just giving them a complete fix (as CLARA-S currently does).
An incremental APR-based hinting system may be better for
developing students’ problem solving skills and higher order
thinking. For example, the first ‘hint level’ could simply
localise the logical error, i.e. the tool informs students which
line needs fixing (without suggesting how). From here, further
hint levels could gradually reveal details of the fix until the
whole repair is given (akin to the hint system of [27]).

VI. CONCLUSION

We developed CLARA-S, an extension of the CLARA APR
tool that covers more of the Python language and can be
run as a Jupyter Notebook extension. In order to understand
how students perceive it as an aid for learning programming,
we designed a preliminary study in which students tackled
exercises with and without support from the tool using a think
aloud protocol. While students expressed positive sentiments

overall, we found that novices struggled to decipher the
feedback that CLARA-S gave to them. This was reminiscent
of the known challenges they face with compiler messages,
suggesting that usability work in that area might be applicable
here too. We also found that intermediate programmers and
instructors benefited most from being told where the fix needed
to be applied (more so than how they needed to fix it).

Our immediate task is to expand this preliminary work
into a full study and measure the impact on learning with a
larger group. We also want to explore how the feedback from
CLARA-S can be displayed/explained in a way that better
supports novices. Furthermore, future work should explore
the potential utility of an APR-driven incremental hint system
akin to [27], i.e. by initially revealing only the fix location
before gradually revealing (partial) repairs. It would also
be interesting to study how hint-based APR systems impact
learning in comparison to systems that immediately reveal the
complete solution, such as ChatGPT [28].
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