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Abstract

Debugging is a fundamental skill that novice programmers must
develop. Numerous tools have been created to assist novice pro-
grammers in this process. Recently, large language models (LLMs)
have been integrated with automated program repair techniques
to generate fixes for students’ buggy code. However, many of these
tools foster an over-reliance on Al and do not actively engage stu-
dents in the debugging process. In this work, we aim to design an
intuitive debugging assistant, CODEHINTER, that combines tradi-
tional debugging tools with LLM-based techniques to help novice
debuggers fix semantic errors while promoting active engagement
in the debugging process. We present findings from our second
design iteration, which we tested with a group of undergraduate
students. Our results indicate that the students found the tool highly
effective in resolving semantic errors and significantly easier to use
than the first version. Consistent with our previous study, error
localization was the most valuable feature. Finally, we conclude
that any Al-assisted debugging approach should be personalized
based on user profiles to optimize their interactions with the tool.
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1 Introduction

The first hurdle novice programmers encounter when writing code
is ensuring that it is free of syntax errors [24]. Although most
compilers and interpreters generate error messages that provide
information about these errors, many novice programmers struggle
to interpret and fix them [6]. To address these challenges, numerous
tools and approaches have been developed to help novice program-
mers read, interpret, and resolve error messages effectively [3, 16].
However, many of these tools primarily focus on improving er-
ror messages rather than guiding students through the debugging
process [1].

Recent advances in Al-assisted programming have introduced
large language model (LLM) tools as potential debugging assistants,
capable of automatically identifying and fixing errors. LLMs have
already shown strong accuracy in correcting syntax errors, opening
up new possibilities for automated debugging support [10, 29].
Moreover, LLM-based tools such as ChatGPT and GitHub Copilot
can provide explanations of syntax errors along with code examples
that help learners understand and correct their mistakes [8, 19].

While LLM-based tools provide valuable assistance in fixing
syntax errors, their ability to help novice programmers identify, un-
derstand, and resolve semantic errors remains limited. First, studies
have shown that while LLM-based tools can resolve some seman-
tic errors, their accuracy varies depending on the complexity of
the problem [29]. Second, the generated solutions may differ sig-
nificantly from students’ original buggy code, making it difficult
for novice programmers to understand how to modify their code
accordingly [26]. Third, LLM-based tools may also introduce new
errors, which novice programmers often struggle to recognize or
correct, leading to a negative learning experience.

Finally, and most importantly, many LLM-based tools generate
complete solutions to semantic errors rather than guiding users
through the step-by-step debugging process that is essential for
learning. As a result, novice programmers may develop an over-
reliance on Al tools, which can hinder their ability to debug inde-
pendently [5]. This dependence not only affects the accuracy of
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solutions but also impairs the ability of students to develop critical
problem-solving skills. Without structured guidance, students may
adopt Al-generated solutions without fully understanding how to
troubleshoot and resolve issues on their own. Proficiency in testing,
debugging, and fixing code is a fundamental skill for computer
science (CS) graduates, and its importance is even greater in the era
of Al-assisted programming, where Al tools enhance productivity
but cannot substitute for a programmer’s ability to independently
reason through errors.

Our work introduces CODEHINTER, an interactive debugging
tool that goes beyond automatic error correction to actively guide
students through diagnosing and fixing their own code. By in-
tegrating fault localization techniques with LLM-powered hints
directly into the IDE through a simple one-click interface, CODE-
HINTER promotes step-by-step problem solving, deepens students’
understanding of errors, and reduces reliance on fully automated
solutions. We evaluate its usability through a user study, highlight-
ing how structured, interactive guidance can strengthen debugging
skills and improve programming education.

2 Related Work

In this section, we review related work on how LLMs assist novice
programmers in fixing errors. We examine various tools designed
to help them resolve both syntax and semantic errors. Given the
extensive literature on this topic, we focus on a selection of repre-
sentative studies most relevant to our work.

Leinonen et al. utilized Codex, a model based on GPT-3, to im-
prove the clarity of programming error messages [16]. Program-
ming error messages are often difficult for novice programmers
to interpret [22]. Their work aimed to enhance these messages by
providing explanations of the errors along with suggested fixes.
They found that LLMs can generate helpful, novice-friendly expla-
nations, improving students’ comprehension and their ability to
correct errors. While the explanations generated by Codex were
generally comprehensible, the suggested fixes were correct only
33% of the time. To improve the accuracy of generated fixes, Phung
et al. introduced a novel runtime validation mechanism to assess
whether the feedback provided by the LLM in the initial stage
was suitable for students [21]. Their approach involved iteratively
querying the LLM to generate fixes for the buggy program while
leveraging feedback from previous LLM iterations. If the number
of syntactically correct programs exceeded a predefined threshold,
the feedback was deemed acceptable. This method enabled them
to achieve high precision in identifying and correcting syntax er-
rors. However, their study was limited to syntax errors, and its
effectiveness in addressing semantic errors has not been explored.

A widely explored approach for addressing semantic errors is
automated program repair (APR) [27]. LLMs have been applied to
APR through fine-tuning, few-shot learning and zero-shot learn-
ing [28]. One notable example is PyDex, which employs few-shot
learning to repair both syntactic and semantic bugs in introductory
Python assignments [26]. PyDex utilizes the structure of a student’s
buggy program as input to the LLM, resulting in repairs that require
fewer edits. When compared to other APR tools, PyDex achieved a
repair rate of 96.5%. Additionally, the average token edit distance
for PyDex-generated patches was lower than that of competing
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tools. However, PyDex provides fixes without student intervention,
which may hinder the development of debugging skills, as students
receive corrections without actively engaging in the debugging
process. CodeAid, on the other hand, provides helpful and techni-
cally accurate responses without revealing full code solutions to
students [12]. This tool allows students to ask general program-
ming questions, seek explanation for their code, request help in
fixing their code, and receive help with writing new code. CodeAid
employs an LLM in a two-step process to assist students in fixing
their code. First, it generates a corrected version of the code based
on the provided description and buggy implementation. Second, it
explains the modifications using bullet points, detailing what was
changed and why. However, the student interface only displays
the bullet-point explanations rather than the corrected code itself,
ensuring that solutions are not directly provided.

Although CodeAid does not directly provide solutions, it offers
step-by-step guidance on necessary changes, potentially reducing
the cognitive effort required for debugging. Carver and Risinger
developed a traditional framework for training students in debug-
ging [4]. The process begins with testing a program, followed by
answering a sequence of diagnostic questions, including “what is
the problem?” and “what type of bug could cause the problem?”.
Katz and Anderson observed that programmers often employ back-
ward reasoning when debugging their own code, typically starting
by examining the output [11]. Additionally, research indicates that
the skills required for fixing errors are not necessarily related to
the methods used to identify and locate them. Studies show that for
most students, the main difficulty in debugging lies not in repairing
errors, but in earlier troubleshooting stages, such as understand-
ing the system, testing, and locating errors within it [17]. In fact,
a multi-institutional study of novice debuggers by Fitzgerald et
al. found that once students successfully identify and locate bugs,
they are generally able to fix them [7].

3 Design of CodeHinter

Our tool, CODEHINTER, shown in Figure 1, is designed to help
students debug and fix their code. It evolved from an earlier version
of the tool called SID (for Simulated Interactive Debugging) [18],
which allowed users to run a test file for their Python programs. If
any of the tests failed, SID automatically inserted breakpoints in
the IDE. To achieve this functionality, the tool was integrated as an
extension in Visual Studio Code (VS Code). An initial study on SID
provided insights that informed further design improvements.

This paper presents the current version of CODEHINTER, which
continues to be developed as an extension within Visual Studio
Code, following positive feedback from students. The key improve-
ment over SID is a closer alignment with the debugging process to
actively engage students in critical thinking. In particular, CopEHIN-
TER includes the following new features: (1) a single ‘End-to-End
Test’ button that allows students to run and test their code; (2) an
LLM-powered system that generates hints and quizzes to prompt
users to analyze errors and explore possible fixes; (3) line highlight-
ing and a code difference interface to help students identify and
modify relevant code sections; (4) a spectrum-based fault localiza-
tion tool to pinpoint errors; and (5) an LLM-generated pseudo-code
feature to help students understand the given problem.
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Figure 1: (Left) ‘End-to-End Test’ feature, the main feature of CODEHINTER. The screenshot shows the state when users encounter
failed test cases (corresponding to * in Figure 2), highlighting the expected value and actual output in the text editor while
providing a brief explanation in the chatbot. (Right) CoDEHINTER ‘Expand Menu’, where users can access other features.
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Figure 2: Flow of user interactions with our tool. The pro-
cess begins with users pressing the ‘End-to-End Test’ button,
which checks for syntax and semantic errors. Users are then
guided to complete the missing debugging steps. If test cases
fail, the tool provides options to help users resolve the bugs.
The asterisk indicates the state of the screenshot in Figure 1.
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Our tool currently supports Python, as it is one of the most widely
used languages in introductory programming courses. Additionally,
Python has several mature libraries for testing and fault localization
that can be easily integrated. Our tool utilizes FauxPy [23] for
spectrum-based fault localization, which is also part of the PyTest
testing framework. The LLM powering our tool is OpenAI’s GPT-
40, which offers high accuracy and significantly improved speed
and cost-effectiveness compared to reasoning models like o1-mini
and o1, which are better suited for more complex problems. GPT-
4o is particularly effective for debugging and addressing novice
programming issues [20].

One of the key features of the extension is the ‘End-to-End Test’
button. This button is designed to align with the standard debugging
framework, incorporating backward reasoning. Figure 2 shows how
the user is engaged at various debugging stages.

Note that we did not implement SID’s ‘insert breakpoints’ fea-
ture in CODEHINTER, as the new version of the tool utilizes print
statements for debugging instead, which are hypothesized to be
simpler for novices. In the pilot study, we ask participants to test
both CopEHINTER and SID to compare these alternative strategies.

The helper tools in the end-to-end tests can also be manually
selected by using the main menu item ‘Helpers to Solve Bugs’. Four
tools are currently provided: identifying lines with errors; providing
hints and quizzes; inserting print statements; and opening Python
Tutor [9]. These features are designed to assist users in debugging
their code without directly providing solutions from an LLM. They
can be triggered automatically when test cases fail, or manually
by expanding the menu and selecting the desired option (Figure 1).
We expand on the helper tools below.

Locate Lines With Errors. When users select this option,
the tool runs Python’s spectrum-based fault localization method,
FauxPy [23]. FauxPy generates probability scores for source code
line numbers, indicating the most likely sources of failed test cases.
The algorithm identifies and ranks multiple lines based on their
likelihood of containing faults. From this ranked output, we extract
up to three lines with the highest probabilities.

Next, we leverage an LLM to provide explanations for why these
specific lines are the most probable sources of error. This approach
enhances the objectivity of the debugging process by ensuring
that LLM-generated insights are grounded in the output of fault
localization rather than speculative reasoning. By doing so, we
mitigate the risk of hallucination when identifying potential errors.

The tool then highlights the identified lines and provides expla-
nations to help users fix the error. It is important to note that fault
localization tools like FauxPy identify lines where variables are not
updated correctly, but these may not always be the exact source of
the error. For instance, if a bug originates from an incorrect condi-
tion in an if-else statement, leading to a wrong assignment, FauxPy
can detect that the values are assigned incorrectly but will not
highlight that the issue stems from the condition itself. Although
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this approach may seem unintuitive, identifying lines where the ex-
pected value differs from the actual executed value aligns with how
programmers typically debug their code using backward reason-
ing. Once they identify discrepancies in values, they hypothesize
potential causes and trace the issue back to its source.

Provide Hint and Quiz. This feature is activated either when a
syntax error occurs or when a user selects this option after encoun-
tering a semantic error. Instead of directly providing an explanation,
the LLM generates three possible solutions, with only one being
correct. These options suggest possible ways to correct the error,
whether syntactical or semantic. Once the user selects an answer,
the system immediately indicates whether the choice was correct
and provides an explanation. By incorporating interactive quizzes,
this feature encourages users to think critically while still receiving
structured support.

Insert Print Statement. Research has shown that novice pro-
grammers often rely on print statements rather than using debugger
mode [7]. To support this behavior, we leverage LLMs to suggest up
to three key variables for users to observe by printing their values
to the standard output. Once the LLM identifies the locations for the
print statements, the tool provides a brief explanation in the chat
about why these variables are relevant. A new tab is then opened,
displaying the printed output with green-highlighted lines to help
users visualize changes. Additionally, users have the option to paste
the modified code into the text editor if they wish to incorporate
the suggested changes.

One intentional design choice is that this process does not di-
rectly modify the source code, encouraging users to analyze the
suggested change before making edits. The code is only modified
when the user chooses to paste the suggested changes into the text
editor. This approach allows users to manually insert print state-
ments, selecting only the most relevant lines rather than applying
all the suggested modifications.

Open Python Tutor. Given that novices rarely use debugger
mode, to bridge this gap, the final helper tool is a button that redi-
rects users to Python Tutor, allowing them to visualize code execu-
tion in an interactive environment. This approach provides a more
intuitive and accessible debugging experience without requiring
users to step into the complexity of debugger mode. We see this as
a stepping stone for users, helping them gradually transition to ad-
vanced debugging techniques commonly used by more experienced
programimers.

4 Methodology

We conducted a study with ten participants, divided into two groups
of five. Though this number seems small, it is considered enough
for usability testing according to [25]. Each participant was given
50 minutes to complete two tasks: (1) debugging a buggy program
using CopEHINTER; and (2) debugging another buggy program
using the ‘insert breakpoints’ feature of SID. The only difference
between the two groups was the sequence in which they used the
tools. One group used CoODEHINTER first, followed by SID, while the
other group used SID first, followed by CopEHINTER. Each buggy
question contained a maximum of two incorrect lines of code, and
corresponding test cases were provided for both debugging tasks.
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Before the session began, participants completed a profiling
questionnaire to assess their programming background. We also
provided a demonstration of the tools. During the debugging tasks,
users had the flexibility to choose which helper tools within CopE-
HINTER to use based on their preferences. However, we encouraged
them to avoid revealing the provided code solution unless they were
unable to solve the problem after 15 minutes. The participants’ chat
sessions were stored in a MongoDB NoSQL database to track their
interactions and usage patterns. This allowed us to monitor which
tools they accessed during the study.

The two test questions were sourced from LeetCode [14, 15] and
cover different algorithmic challenges. The first question, Move Ze-
roes (#283), requires participants to move all zeroes in an array to the
end while maintaining the relative order of the non-zero elements.
The second question, Summary Ranges (#228), asks participants
to summarize a sorted array of numbers into concise ranges of
consecutive elements.

After completing the tasks, participants were required to submit
a post-task survey and a standardized Brooke’s system usability
questionnaire [2]. The post-task survey consisted of common ques-
tions applicable to both CopEHINTER and SID, followed by tool-
specific questions. The common section assessed general usability,
effectiveness, and user preferences, while the tool-specific sections
focused on unique features, user confidence in debugging, and
areas for improvement. Additionally, participants provided qualita-
tive feedback on what they liked, disliked, and suggested features
for future enhancements. As a token of appreciation, participants
received the equivalent of USD 20 upon completion of the study.

5 Results
5.1 Profile of Participants

We recruited eight first-year and two second-year undergraduate
students from the Singapore University of Technology and Design
(SUTD). The first-year students had completed an introductory
programming course but had not yet chosen their major, while
the second-year students may have taken additional programming
courses. We found that seven out of ten participants had experience
writing over 500 lines of code for unique projects, suggesting they
were not complete beginners. However, their confidence levels in
debugging varied. While 50% felt confident in debugging simpler
problems, only 40% were comfortable handling more complex is-
sues. Regarding debugging preferences, 60% preferred guidance
that included explanations of key actions needed to identify the
bug. Notably, only two students regularly used debugging tools as
part of their programming habits, while five students had never
heard of any debugging tools.

5.2 Post-Task Survey Results

We collected survey responses from participants after they com-
pleted all the assigned tasks. Due to limited space, we only highlight
results for CODEHINTER and not SID. Figure 3 illustrates the features
that participants found most useful in CoDEHINTER. The results
indicate that the most helpful tools were ‘End-to-End Test’ and
‘Locate Lines With Errors’, which aligns with our expectations.
Additionally, we retrieved data from our database to track chat-
bot sessions and identify the most frequently used tools. The data
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Figure 4: Frequency of access and utilization of features.

shown in Figure 4 only counts clicks on individual menu options,
excluding instances where features were used as part of the ‘End-
to-End Test’ button.

As expected, ‘End-to-End Test’ was used by all participants and
ranked as the most frequently used feature. Among the four avail-
able helper tools, ‘Locate Lines With Errors’ was the most popular,
with most participants using it multiple times, except for one user.
The ‘Provide Hint and Quiz’ and ‘Insert Print Statements’ features
were each used by half of the participants. However, participants
tended to use ‘Provide Hint and Quiz’ multiple times, whereas
‘Insert Print Statements’ was typically used only once per user. Ad-
ditionally, only one user utilized the ‘Open Python Tutor in Web
Browser’ feature, while two users interacted with the general chat-
bot. Notably, six out of ten participants clicked the ‘Provide Code
Solution’ button, with some clicking it multiple times, possibly to
check and compare their answers.

5.3 Usability and Satisfaction

Using the standardized Brooke’s System Usability Scale (SUS) [2],
we calculated an average score of 75/100 for CODEHINTER, com-
pared to 65/100 for SID, as reported in our first study [18]. According
to Brooke’s methodology, SUS scores are most meaningful when
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compared across systems, allowing us to conclude that CopeHIn-
TER provides a significantly improved user experience over SID. This
finding is further reinforced by the post-task survey, where partici-
pants gave an overall satisfaction rating of 89/100 for CODEHINTER,
compared to 60/100 for SID. The higher rating for CoDEHINTER
suggests that users found it more effective and user-friendly in
assisting with debugging tasks, indicating a strong improvement
in our second design iteration.

Participants highlighted the strengths of CODEHINTER, particu-
larly in debugging semantic errors and its ease of use. Selected user
quotes from the survey include:

“It has a lot of features to help us debug semantic
errors instead of simply copying and pasting solutions
from other LLM Al models”

“It was user-friendly and intuitive to use, providing
accurate information”

“Ido not dislike it because of its high quality in helping
beginners become more familiar with coding”

5.3.1 End to End Test. Users expressed the highest level of satis-
faction with this feature. All participants found it helpful, with two
selecting ‘Agree’ and eight selecting ‘Strongly Agree’ in response
to the statement that it significantly aided in problem-solving.

“It helps me to know which logic errors I am still
facing and also display the failed test cases that I need
more time to debug the semantic errors”

“It was very useful to have a tool that could provide
me with descriptions of what happened during the
testing of the test cases.”

5.3.2 Locate Line With Error. Among the four helper tools, ‘Locate
Lines With Errors’ was the most frequently used and highly favored
by users. In the survey measuring how often participants would
use this feature, it received an average rating of 4.5/5. Interestingly,
our database retrieval showed that one participant did not use this
tool at all, as this participant was able to solve the problem just by
utilizing ‘End to End Test’.

“This feature allowed me to more easily find possible
logical flaws in my code which could’ve taken me a
lot more time to spot without such tools”

“This is by far the best feature which helps us seam-
lessly navigate where the bug is most likely to be”

“I don’t have to search and debug/print a million lines
to find the root cause of the error”

5.3.3 Hint and Quiz. This feature was also well-received by users.
The majority of the participants appreciated its interactive ap-
proach, as it encourages thinking when fixing the bugs. However,
one comment suggested that this feature may not be their preferred
option if given a limited time to solve the problems in.

“The hints provided make me think about where the
error is in my code by myself”

“Effective. It is interactive and helps the user to under-
stand the bug”

“I am unlikely to use this tool unless I am very des-
perate to solve a problem within a time duration, and
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in that situation I wouldn’t want to be quizzed with
possible solutions.”

5.3.4 Insert Print Statement. The results for ‘Insert Print Statement’
are similar to the ‘Provide Hint and Quiz’ feature, with half of the
participants attempting to use it. However, each user only used this
feature once, unlike ‘Provide Hint and Quiz’, which participants
interacted with multiple times. This difference may be because
locations and variables of the print statements tend to be the same
depending on the structure of the code. On the other hand, the
‘Provide Hint and Quiz’ feature generates different options as the
code changes. This could happen if the users apply a wrong fix.
Users also mentioned that ‘Insert Print Statement” helps them debug
faster by allowing them to quickly spot errors, making it especially
beneficial for beginners.

“I think this tool can be useful for simple testing and
spotting errors in the code, especially for beginners
who are less familiar with the debugging tool”

“Can do the print statements for me faster, which nor-
mally takes a while to do”

6 Discussion & Future Work

Overall, participants provided positive feedback on CODEHINTER.
As expected, users found the ‘End-to-End Test’ button highly useful,
as indicated by both its frequent usage among all participants and
their comments about the tool. Among the individual tools designed
to assist with debugging, users found the ‘Locate Lines With Errors’
feature the most helpful. This aligns with previous studies showing
that one of the most challenging aspects of debugging for novice
programmers is locating errors [7, 17]. Additionally, research on
the use of APR has similarly found that error location messages are
the most helpful information for novice programmers when fixing
their code [13].

Our study results also showed positive feedback on the use of
the ‘Hints and Quiz’ helper tool to engage the participants in the
debugging process. Instead of directly specifying what to replace, as
most previous tools do, incorporating quizzes encourages learners
to think critically and formulate hypotheses about the possible
causes of errors and potential solutions. Participants’ comments
after using the tool aligned with our intended approach, confirming
that novice debuggers can be actively involved in aspects of the
debugging process, such as hypothesizing the cause of errors and
identifying possible fixes.

Regarding the ‘Insert Print Statement’ feature, we were initially
surprised that each user used it only once for the problem they
worked on with CopEHINTER. However, their comments were
largely positive, indicating that they found the feature useful. There-
fore, we hypothesize that, unlike ‘Provide Hints and Quiz’, this fea-
ture serves a one-time function in helping users identify bugs. Once
the print statements are inserted, users do not need to reinsert them;
instead, they simply run the code to observe the output. Addition-
ally, this feature was introduced as part of our design exploration,
serving as an alternative to automatically inserting breakpoints,
as implemented in the first iteration of our tool, SID. Our initial
hypothesis was that novice programmers find using print state-
ments easier than working with an IDE’s debug mode. However,
we discovered that some intermediate programmers prefer using
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breakpoints and the debug mode instead. This suggests that future
iterations of the tool should offer both options, allowing users to
choose the method that best suits their debugging preferences.

This leads us to conclude that personalizing the tool based on the
user’s profile is essential. With advancements in Al it is increasingly
feasible to profile users based on their interactions with debugging
tools. By doing so, novice programmers can be prompted with
features better suited to their skill level, while more experienced
users can be provided with advanced debugging tools tailored to
their needs. Additionally, the tool can be adapted based on the
specific problem being debugged, ensuring a more effective and
user-centric debugging experience.

Furthermore, the participants also provided valuable suggestions
for future improvements. For example, participants suggested in-
corporating real-time assistance not only for writing code but also
for debugging, enabling dynamic support as they work through
identifying and fixing bugs. Additionally, they expressed interest
in integrating code quality analysis during debugging to provide
more tailored feedback.

This work is limited by its small participant pool, as it represents
a pilot study focused on the tool’s design and usability. Further
research should examine its impact on learning outcomes, particu-
larly how it influences the development of debugging skills among
novice programmers.

7 Conclusion

In conclusion, this study demonstrates the potential of Al-assisted
tools like CODEHINTER to enhance the debugging experience for
novice programmers by fostering active engagement rather than
passive reliance on generating complete solutions. Through a user-
centric design that integrates spectrum-based fault localization,
interactive hints and quizzes, and print statement suggestions, all
within a familiar IDE environment, CODEHINTER effectively sup-
ports the debugging process. The tool’s usability and effectiveness
were validated in a pilot study, with participants favoring features
that guided them through the problem-solving process while re-
inforcing critical thinking. Our findings also underscore the im-
portance of tailoring AI support to individual user profiles and
problem contexts. Future debugging tools should focus on pro-
viding personalized assistance to optimize learning outcomes and
foster independent debugging skills.
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