
FIXDRIVE: Automatically Repairing Autonomous
Vehicle Driving Behaviour for $0.08 per Violation

Yang Sun 1 Christopher M. Poskitt 1 Kun Wang 2 Jun Sun 1

1School of Computing and Information Systems, Singapore Management University, Singapore
yangsun.2020@phdcs.smu.edu.sg, cposkitt@smu.edu.sg, junsun@smu.edu.sg

2State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
kunwang yml@zju.edu.cn

Abstract—Autonomous Vehicles (AVs) are advancing rapidly,
with Level-4 AVs already operating in real-world conditions. Cur-
rent AVs, however, still lag behind human drivers in adaptability
and performance, often exhibiting overly conservative behaviours
and occasionally violating traffic laws. Existing solutions, such
as runtime enforcement, mitigate this by automatically repairing
the AV’s planned trajectory at runtime, but such approaches lack
transparency and should be a measure of last resort. It would be
preferable for AV repairs to generalise beyond specific incidents
and to be interpretable for users. In this work, we propose
FIXDRIVE, a framework that analyses driving records from
near-misses or law violations to generate AV driving strategy
repairs that reduce the chance of such incidents occurring again.
These repairs are captured in µDrive, a high-level domain-specific
language for specifying driving behaviours in response to event-
based triggers. Implemented for the state-of-the-art autonomous
driving system Apollo, FIXDRIVE identifies and visualises critical
moments from driving records, then uses a Multimodal Large
Language Model (MLLM) with zero-shot learning to generate
µDrive programs. We tested FIXDRIVE on various benchmark
scenarios, and found that the generated repairs improved the
AV’s performance with respect to following traffic laws, avoiding
collisions, and successfully reaching destinations. Furthermore,
the direct costs of repairing an AV—15 minutes of offline analysis
and $0.08 per violation—are reasonable in practice.

Index Terms—autonomous vehicles, autonomous driving sys-
tems, multimodal large language models, driving compliance

I. INTRODUCTION

Autonomous Vehicles (AVs) are currently undergoing rapid
and promising development. Notably, several Level-4 AVs,
which do not require driver intervention, have been success-
fully deployed in real-world traffic scenarios [1]. Prominent
examples include Google Waymo [2], Baidu Apollo [3],
and TuSimple [4]. These AVs are capable of performing
critical tasks such as perception, trajectory planning, and
actuation control. However, despite these advancements, AVs
are far from perfect and still lag significantly behind hu-
man drivers in terms of performance and adaptability. For
instance, AVs sometimes exhibit overly conservative driving
behaviour, which can lead to situations where they become
stuck on the road [5]. Furthermore, Autonomous Driving
Systems (ADSs)—the ‘brains’ of AVs, responsible for per-
ception, decision-making, and control—can also be overly
aggressive and cause accidents under specific conditions [6],
[7], [8], [9]. Such behaviours are often easily recognisable
and avoidable by human drivers, underscoring the need for

significant improvements before AVs can match or surpass
human driving capabilities.

Existing work offers two categories of solutions to address
these problems. The first category uses rule-based runtime
enforcement to correct problematic behaviour directly [10],
[11], [12], [13], [14], [15], [16], [17]. For example, when an
ADS encounters potential violations of specific property spec-
ifications (e.g. traffic laws), one proposed solution, outlined in
REDriver [10], uses a gradient-based algorithm to modify the
AV’s planned trajectory. However, these repairs are limited in
scope and lack transparency, since they are very low-level and
difficult for users to interpret. Furthermore, they are meant to
be a measure of last resort rather than a general correction to
driving strategies.

The second category involves learning-based methods,
which train ADSs to behave like human drivers using real
driving data. These approaches focus on exploring and sum-
marising human driver behaviour patterns to guide the driving
modes of ADSs [18], [19], such as imitation learning to
replicate expert behaviour and train the ADS to drive in
a human-like manner [20], [21], [22], [23], [24]. However,
these approaches often fall short due to the difficulty of
capturing the nuanced decision-making processes of human
drivers from limited data, leading to poor generalisation or
overfitting to specific tasks. Consequently, there is a need for
an AV driving strategy repair approach that generalises beyond
specific incidents and is interpretable for users.

Multimodal Large Language Models (MLLMs) appear to
be intelligent and ideally suited for improving ADSs due to
their advanced text and image understanding and reasoning
capabilities [25], [26], [27]. Trained on massive datasets,
MLLMs can interpret and replicate human driving behaviour,
thereby making ADS decisions more explainable [28]. Ex-
isting works (e.g. [29], [30], [31]) explore utilising MLLMs
to replace parts of the ADS, such as perception, planning,
and control, thereby making the decision-making logic more
understandable. For example, GPT-Driver [30] abstracts the
perception and prediction results of the ADS into language
tokens, then uses OpenAI GPT 3.5 to directly produce the
planned trajectory along with explanations. However, the in-
herent latencies and uncertainty associated with generative
models make it impractical to build an ADS based solely
on online MLLMs. Additionally, there is a significant gap

https://orcid.org/0000-0002-2409-2160
https://orcid.org/0000-0002-9376-2471
https://orcid.org/0000-0001-5523-1330
https://orcid.org/0000-0002-3545-1392

Non-compliant
record

Rules

µDrive

AV
Prompt

ViolationNear-miss

MLLM

Simulator

Fig. 1: Overview of FIXDRIVE

between natural language and the actual control commands for
autonomous vehicles, making it challenging to directly apply
MLLM-generated solutions to real-world driving tasks. Cur-
rently, there are no practical approaches that leverage MLLMs
in a manner that is both offline and compatible with existing
ADS frameworks such as Apollo [3] and Autoware [32].

In this work, we propose FIXDRIVE, a method that anal-
yses records (i.e. comprehensive log files) from bad driving
behaviours such as collisions, near misses, or law violations,
then generates general AV driving strategy repairs to reduce
the chance of such incidents occurring again. Rather than
modifying code [33] or applying opaque low-level fixes [10],
FIXDRIVE produces repairs in µDrive [34], a high-level
Domain-Specific Language (DSL) for specifying the driving
behaviours that should occur upon certain triggers (e.g. ap-
proaching a traffic light). FIXDRIVE identifies and visualises
critical moments from incident records, then utilises an MLLM
with zero-shot learning to generate µDrive programs that
repair the driving strategy. This translation is executed offline
and once per violation, allowing our approach to leverage
the reasoning capabilities of MLLMs while mitigating their
latency issues. Additionally, by generating repairs in a high-
level DSL, they are more interpretable compared to those of
low-level gradient-based approaches like REDriver [10]. Note
that we categorise methods as either offline or online based on
how they interact with runtime driving decisions. For example,
an MLLM that generates real-time driving decisions based on
the current driving context is classified as an online method.
Conversely, FIXDRIVE is an offline framework, enhancing the
ADS through repair scripts generated before further runs.

An overview of FIXDRIVE is shown in Figure 1. Users
need only provide records from executed driving scenarios
and the corresponding property specifications (e.g. traffic laws,
collision avoidance) that were violated. FIXDRIVE automati-
cally identifies two critical moments from the records (the
‘near miss’ and the ‘violation’ moments), visualises them for
a multimodal prompt, then utilises a state-of-the-art MLLM
(OpenAI GPT 4 [35]) to generate driving strategy repair scripts
in the µDrive [34] DSL. Additionally, OpenAI’s function
calling [36] is used to ensure that the MLLM generates
syntactically valid µDrive programs, which are specified via
a JSON Schema. The resulting program is then applied to the
Apollo ADS [37], dynamically adjusting the parameter settings
of the planning module to repair its driving strategy at runtime.

We evaluated FIXDRIVE on a set of benchmark scenarios in
which the ADS violated various property specifications, such
as different traffic laws, collision avoidance, and successful

ϕ := µ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

µ := f(x0, x1, · · · , xk) ∼ 0 ∼ :=> | ≥ | < | ≤ | ≠ | =;

Fig. 2: Specification language syntax, where ϕ, ϕ1 and ϕ2 are
STL formulas, I is an interval, and f is a multivariate linear
continuous function over language variables xi

journey completion. FIXDRIVE provided effective general
driving strategy repairs that helped the ADS successfully nav-
igate these problematic scenarios without adversely affecting
performance in normal scenarios. Additionally, FIXDRIVE
consistently generated effective AV driving strategy repairs
with practically reasonable direct costs, i.e. less than 15
minutes (and typically around 10 minutes) of offline analysis
and $0.08 per violation.

II. BACKGROUND AND PROBLEM

In this section, we review the architecture of ADSs, DSLs
for specifying safety properties and specifying high-level driv-
ing behaviours, the current capabilities of MLLMs, and then
formally define our problem.

A. Overview of ADSs

State-of-the-art open-source ADSs such as Apollo [37]
and Autoware [32] share similar architectures. These systems
are typically organised into loosely-coupled modules that
communicate via message-passing. Three of these modules
are particularly relevant in our context: perception, motion
planning, and control.

The perception module receives sensor readings (e.g. from
cameras or LiDAR), processes them, and publishes the re-
sulting data to the motion planning module. The motion
planning module then classifies the current driving scenario
into categories such as lane follow, borrow lane, and traffic
light handling. Each scenario has distinct processing logic
and key parameters. For example, the emergency pull-over
scenario involves two key parameters: Expected speed and
Stopping distance. During an emergency pull over, the vehicle
is expected to rapidly decrease to the Expected speed and then
proceed to pull over, with the Stopping distance indicating
how far the vehicle should travel before coming to a com-
plete stop. For more detailed information on how these key
parameters work, we refer the reader to [37], [32].

For each scenario, the motion planning module generates a
corresponding planned trajectory based on the map, destina-
tion, sensor inputs, and the state of the ego vehicle (i.e. the
vehicle under ADS control). This planned trajectory outlines
the vehicle’s future positions at various time points, taking
into account the predicted environment, which includes factors
such as the anticipated movements of other vehicles (NPCs),
pedestrians, and traffic light states. Finally, the control mod-
ule translates the planned trajectory into control commands
(e.g. braking, acceleration, steering, and signaling) so that the
ego vehicle follows the planned trajectory, passing through the
waypoints with the desired speed, acceleration, steering angle,
and gear position.

program ::= {rule}+
rule ::= ’rule’ string literal

’trigger’ event trigger
[’condition’ {[’!’] condition}+]
’then’ {action}+
[’until’ event trigger]
’end’

event trigger ::= event | ’always’

Fig. 3: Abstract syntax of µDrive programs

B. Specifying Safety Properties

In the context of AVs, safety should not simply mean
the absence of collisions, but also adherence to the rules
of the road that drivers are supposed to abide by. To that
end, we adopt the property specification language used by
LawBreaker [8], as well as the project’s existing specifications
of the traffic laws of China and Singapore. The specification
language is based on Signal Temporal Logic (STL), and is
evaluated with respect to traces of scenes, providing a way to
automatically determine whether a tester-defined property was
violated or not in a simulated run of the ADS. We highlight
the key features of the specification language below (the full
syntax and semantics is given in [8]).

The high-level syntax of the language is shown in Figure 2.
A time interval I is of the form [l, u], where l and u are
respectively the lower and upper bounds of the interval.
Following convention, we write ♢I ϕ to denote true UI ϕ; and
□I ϕ to denote ¬ ♢I ¬ϕ. Intuitively, U, □, and ♢ are modal
operators that are respectively interpreted as ‘until’, ‘always’,
and ‘eventually’. We omit the time interval when it is [0,∞].

In general, µ can be regarded as a proposition of the form
f(x0, x1, · · · , xk) ∼ 0, where f is a multivariate function and
xi for all i in [0, k] is a variable supported in the language.

Example II.1. Suppose we have a signal variable speed =
⟨speed(0), speed(1), . . . , speed(n)⟩, which represents the au-
tonomous vehicle’s speed throughout its journey. Then, we can
create a simple Boolean Expression µ = speed(t) < 60 to
test whether the speed of the vehicle is larger than 60km/h.
Note that µ can be regarded as a proposition of the form
60 − speed(t) > 0 or speed(t) − 60 < 0. To verify whether
µ holds true at all time steps, we can use the temporal logic
symbol ‘always’, resulting in the formula φ = □(speed < 60).

A specification is evaluated with respect to a trace π of
scenes, denoted as π = ⟨π0, π1, π2 . . . , πn⟩, where each scene
πi is a valuation of the propositions at time step i, and π0

reflects the state at the start of a simulation. The language
follows the standard semantics of STL (see e.g. [38]).

C. Specifying Driving Behaviours

The default output of a large language model (LLM) is
natural language, which can be vague and challenging to
utilise. To obtain specific and actionable behaviours for AVs,
we need a robust method to ensure that the output of the LLM
is always valid and directly applicable to AVs. To achieve
this, we utilise the high-level DSL µDrive [34], which allows

rule "Drive slowly through a junction when there is
an obstacle."
trigger

entering_junction
condition

obstacle_distance_leq(20)
is_traffic_light(green)

then
cruise_speed(30)

until
exiting_junction

end

Fig. 4: µDRIVE driving strategy repair example

driving behaviours to be specified in simple rules that are
triggered by contextual events (e.g. approaching a traffic light).

The abstract syntax of µDrive in EBNF format is shown
in Figure 3. A µDrive program contains one or more rules,
each consisting of up to five parts: 1) a name or description
expressed as a string; 2) a trigger, which is an event that
causes the rule to be applied; 3) zero or more conditions,
which constrain the application of the rule; 4) one or more
actions, which are assignments of driving-related variables that
are applied for the duration of the rule; 5) at most one exit
trigger, which is an event that ends the application of the rule.

Intuitively, events represent states monitored by µDrive
as the AV drives through its environment. For example,
the events entering junction and exiting junction are
set to True when the AV is entering or exiting a junc-
tion, respectively. Conditions specify what must be true of
the current environment to allow the rule to be applied.
For example, the conditions is traffic light(green) and
obstacle distance leq(20) indicate that the rule can take
effect only when the traffic light ahead is green and the AV
is within 20 metres of an obstacle. Actions are tasks executed
throughout the duration of a rule application. For example, the
action cruise speed(30) sets the default planning speed of
the AV to 30 km/h. An overall example of a µDrive program
is shown in Figure 4. This program indicates that within a
junction, if an obstacle is detected within 20 metres and the
traffic light ahead is green, the default planning speed of the
AV should be set to 30 km/h. For a detailed introduction to
the grammar of µDrive, we refer readers to [34].

D. Multimodal Large Language Models (MLLMs)

MLLMs integrate and process multiple types of data, includ-
ing text, images, audio, and video. These models utilise the
capabilities of large-scale neural networks to comprehend and
generate content across different modalities, thereby offering
more comprehensive and versatile AI functionalities. State-of-
the-art MLLMs, such as OpenAI’s GPT-4 [35] and Google’s
PaLM-E [39], exemplify the advancements in this field. GPT-
4, for instance, can process textual inputs while simultaneously
understanding and interpreting images, enabling it to describe
images, answer related questions, and seamlessly integrate
visual information with textual content. Similarly, PaLM-E, a
large multimodal embodied language model, integrates textual
and visual data to enhance its ability to comprehend and
interact with the physical environment.

These models are trained on extensive datasets that en-
compass diverse forms of media, which allows them to
acquire a vast amount of general knowledge. This training
enables MLLMs to perform a wide variety of tasks, such
as generating detailed image captions, providing contextually
aware responses, and enhancing search engines with improved
understanding of visual queries. The multimodal approach
significantly enhances the model’s utility, making it capable
of tasks beyond the scope of single-modality models. By
integrating multiple types of data, MLLMs are advancing the
frontier of AI, creating more intuitive and intelligent systems
that better mimic human cognition and understanding.

E. The Problem

Assuming the availability of a powerful MLLM, such as
ChatGPT, with the capability to comprehend driving condi-
tions and provide appropriate suggestions, the challenge lies
in efficiently leveraging this MLLM to analyse records of AV
violations and generate driving strategy repairs in µDrive that
would prevent such violations occurring again in the future.
We formulate our problem as follows:

Definition 1 (Problem Definition). Given an MLLM, a record
α of the AV in a scenario, and a property specification of
ADS behaviour φ, suppose that α ⊭ φ. The objective is to
utilise the MLLM to generate µDrive programs based on the
combination of α and φ. Let α′ denote the resulting record
of the AV by replaying the same scenario with the µDrive
programs generated by the MLLM applied. The goal is to
increase the likelihood of α′ ⊨ φ.

Intuitively, when a scenario is identified in which the AV
violates specified properties, we provide relevant information
in the prompt to the MLLM to enable it to understand the cur-
rent situation. The MLLM then offers suggestions in the form
of a µDrive program to help ensure such a violation does not
occur again. To maintain minimal and interpretable additional
control logic, the µDrive programs should be kept as small as
possible. This context highlights two critical requirements for
our approach: 1) develop a method to automatically provide
accurate and relevant information to the MLLM; 2) ensure that
the MLLM’s suggestions are translated into valid and effective
µDrive programs.

III. OUR APPROACH

FIXDRIVE, our framework for obtaining general driving
strategy repairs via MLLMs, comprises three main steps. First,
problem localisation, which identifies when the violation of
the specified properties occurred and any near-miss situations.
Second, prompt generation, which automatically generates the
necessary text prompts and visualisations of specific driving
conditions. These specific conditions refer to the time steps
when property violations and near-miss situations occurred.
Finally, µDrive script generation, which formats the MLLM’s
responses into syntactically valid µDrive scripts, ensuring the
driving strategy repairs are executed by the ADS.

A. Problem Localisation

One possible way to allow a language model to comprehend
a driving incident is to provide it with a complete record, i.e.,
a structured log file that captures all necessary data to recreate
the driving scenario. This log would include detailed informa-
tion on the driving environment perception, routing details,
predictions of other vehicles, pedestrians, and traffic lights,
as well as motion planning and control commands. However,
processing such comprehensive records is computationally
intensive, costly, and time-consuming. Fortunately, in driving
scenarios where certain properties are violated, there are
always a few key moments that hold significant importance.
Identifying these moments allows for a better understanding of
the driving scenario, and can also be automated. For example,
ACAV [40] reduces the length of driving records by 62.23%
based on a causality analysis, and correctly identifies causal
events in 93.64% of a set of generated accident records.

In this work, we develop a lightweight approach—based on
a quantitative semantics—to identify two critical moments: the
near-miss and violation moments. The violation moment is the
point at which a specific property is violated. The near-miss
moment occurs a few time steps before the violation, during
which the violation is likely but has not yet happened. For
example, if the property that the AV should follow is ‘avoid
collisions with other objects’, the violation moment is when
the vehicle collides with another object, while the near-miss
moment is when the vehicle fails to maintain a safe distance
from other vehicles. The logic is straightforward: the violation
moment represents the final outcome, whereas the near-miss
moment could be the potential cause of the property violation.
We explain in the following how to identify them.
Quantitative Semantics. To locate critical moments, we need a
method for quantitatively evaluating whether the current trace
satisfies a given property. To achieve this, given a property
specification φ and a driving record for the ADS, FIXDRIVE
first constructs a trace π from the record by evaluating all
variables relevant to φ at each time point. An execution trace
π is a sequence of scenes, denoted as π = ⟨θ0, θ1, . . . , θn⟩.
A scene θ is a tuple of the form θ = (f0, f1, . . . , fx), where
each fi is the valuation of a variable. These variables describe
the status of the vehicle, traffic signal states, and traffic
conditions. For example, variables such as ‘isOverTaking’,
‘junctionAhead(n)’, and ‘NPCAhead(n)’ indicate whether the
vehicle is changing lanes, whether there is a junction ahead
within n metres, and whether there is a vehicle ahead within
n metres, respectively. For a detailed introduction to these
variables, we refer the readers to [8].

Next, FIXDRIVE computes how ‘close’ the ego vehicle will
come to violating φ. To measure how close a trace π is to
violating φ, we adopt a quantitative semantics [38], [41], [42]
that produces a numerical robustness degree.

Definition 2 (Quantitative Semantics). Given a trace π and
a formula φ, the quantitative semantics is defined as the
robustness degree ρ(φ, π, t), computed as follows. Recall that

propositions µ are of the form f(x0, x1, · · · , xk) ∼ 0.

ρ(µ, π, t) =


−πt(f(x0, x1, · · · , xk)) if ∼ is ≤ or <

πt(f(x0, x1, · · · , xk)) if ∼ is ≥ or >

| πt(f(x0, x1, · · · , xk)) | if ∼ is ̸=
− | πt(f(x0, x1, · · · , xk)) | if ∼ is =

where t is the time step and πt(e) is the valuation of expression
e at time t in π.

ρ(¬φ, π, t) = −ρ(φ, π, t)

ρ(φ1 ∧ φ2, π, t) = min{ρ(φ1, π, t), ρ(φ2, π, t)}
ρ(φ1 ∨ φ2, π, t) = max{ρ(φ1, π, t), ρ(φ2, π, t)}
ρ(φ1 UI φ2, π, t) = sup

t1∈t+I

min{ρ(φ2, π, t1), inf
t2∈[t,t1]

ρ(φ1, π, t2)}

ρ(♢Iφ, π, t) = sup
t′∈t+I

ρ(φ, π, t′)

ρ(□Iφ, π, t) = inf
t′∈t+I

ρ(φ, π, t′)

ρ(⃝φ, π, t) = ρ(φ, π, t+ 1)

where t+ I is the interval [l+ t, u+ t] given I = [l, u].

Note that the smaller ρ(φ, π, t) is, the closer π is to violating
φ. If ρ(φ, π, t) ≤ 0, φ is violated. We write ρ(φ, π) to denote
ρ(φ, π, 0); π ⊨ φ to denote ρ(φ, π, t) > 0; and π ̸⊨ φ to
denote ρ(φ, π, t) ≤ 0. Note that time is discrete in our setting.

Example III.1. Let φ = □(speed < 60), i.e. the speed
limit is 60km/h. Suppose π is ⟨(speed 7→ 0, . . .), (speed 7→
0.3, . . .), · · · (speed 7→ 50, . . .)⟩ where the ego vehicle’s max
speed is 50km/h at the last time step. We have ρ(φ, π) =
ρ(φ, π, 0) = mint∈[0,|π|](60 − πt(speed)) = 10. This means
that trace π satisfies φ, and the robustness value is 10.

Violation and Near-Miss Moments. With quantitative se-
mantics, we can now introduce the method to locate the
violation moment and near-miss moment. Given a trace π =
⟨π0, · · · , πn⟩, let πk denote the prefix ⟨π0, · · · , πk⟩, where
k ≤ n. Intuitively, πk represents the first k time steps of
the original trace π. For the violation moment, we identify
the smallest k that satisfies ρ(φ, πk) ≤ 0. For the near-miss
moment, we adopt a user-customisable threshold δ. We aim
to identify a time step k such that ρ(φ, πk) ≤ δ and there
does not exist a time step l such that l < k and ρ(φ, πl) < δ.
Note that δ is determined empirically in our evaluation (see
Section IV). Intuitively, k is the earliest time step when the
robustness value falls below the threshold δ. We identify the
time step k using a sequential search, starting from k = 0 and
incrementing k until we find a k such that ρ(φ, πk) < δ.

Example III.2. Let φ = □(speed < 60), i.e. the speed
limit is 60km/h. Suppose the threshold δ = 5 Suppose π is
⟨π0 = (speed 7→ 0, . . .), π1 = (speed 7→ 1, . . .), · · ·π90 =
(speed 7→ 90, . . .)⟩ where the ego vehicle speed is increasing
over time steps and the ego vehicle’s max speed is 90km/h
at the last time step. We have ρ(φ, π) = ρ(φ, π, 0) =

mint∈[0,|π|](60− πt(speed)) = −30. Hence, the specification
is violated. The following are computed in sequence:

ρ(φ, π0) = 60, ρ(φ, π1) = 59, · · · , ρ(φ, π55) = 5, · · · ,
ρ(φ, π59) = 1, ρ(φ, π60) = 0, ρ(φ, π61) = −1, · · ·

To identify the violation moment, we find the smallest time
step k where ρ(φ, πk) ≤ 0. In this case, k = 60. Similarly, the
smallest time step k where ρ(φ, πk) ≤ 5 is k = 55. Therefore,
the violation moment occurs at time step 60, and the near-miss
moment occurs at time step 55.

B. Prompt Generation

The input for an MLLM can be in various formats, such as
images, videos, audio, and text prompts. Given that MLLMs
are trained on extensive datasets rich in knowledge, we
anticipate they will ‘understand’ the prompts we provide,
much like an intelligent human. In this work, we utilise two
types of prompts: visualisations of driving conditions and text
descriptions to convey essential information not covered by
the visualisations.
Visualisations of Scenarios. In the driving records of ADS
trajectories, each time step contains extensive information such
as the speed, acceleration, and steering angle of the AV, as well
as the positions of other vehicles and pedestrians. While it is
possible to describe this information in natural language, it
does not provide a direct impression of the driving scenario.
For example, given the positions of the AV and another
background vehicle, it can be challenging to determine the
exact direction of the background vehicle relative to the AV.

Fortunately, visualising the driving scenario can help alle-
viate this problem, and state-of-the-art ADSs, such as Apollo,
offer this capability. Detailed information, including the posi-
tions of various objects, can be effectively conveyed through
visualisation by displaying a grid map that shows the relative
positions of each object.

An example of this visualisation is shown in Figure 5.
In this visualisation, the upper-left section, labelled ‘Vehicle
Visualization’, displays the current driving conditions of the
AV (marked in blue), other vehicles (marked in green boxes),
pedestrians (marked in yellow boxes), cyclists (marked in
blue boxes), and unknown objects (marked in purple boxes).
Each box includes numerical values indicating the distance
to the AV and the current speed of the object. The predicted
trajectory of each object is shown as a coloured line. The
lower-left section, labelled ‘Console’, shows logs from the
ADS, while the ‘Module Delay’ section indicates the delay of
each module. The right section, labelled ‘Vehicle Dashboard’,
shows the current status of the AV and the detected status
of traffic lights ahead. The ‘Pnc Monitor’ section provides
detailed information on the inner decisions of the planning
and control modules.

This visualisation compactly encodes rich information in a
human-friendly manner. This is important for the transparency
of the approach: it allows the MLLM’s decisions to be based
on the same high-level information that drivers work with, in-
stead of (for example) low-level gradient-based discrepancies.

Fig. 5: Visualisation of a scenario, which is provided to the MLLM along with an ‘overall prompt’

Overall Prompt. The overall prompt consists of two parts: the
first part includes two images illustrating the visualisation of
the violation moment and the near-miss moment as shown in
Section III-A, and the second part is a text prompt.

Our text prompts complement the ADS visualisation by
providing necessary additional information. These prompts
follow a specific workflow to enable automatic generation.
First, we specify an identity for the MLLM:

(identity) Suppose you are a driver.

Next, since the visualisations do not contain weather in-
formation, we provide information about the current weather
conditions. For example, we state the following if there is no
rain, fog, or snow, and the visibility is more than 50 metres:

(weather) There is nothing noteworthy about the weather.

To aid the MLLM’s understanding of the provided image,
we offer background details about the input image. This
includes describing different aspects of the visualisation to
help the MLLM to understand it:

(background) In these pictures, the left side shows the
visualisation of the driving record. The right side displays the
status of the traffic light, vehicle speed, and steering angle.
The green boxes indicate detected vehicles, yellow boxes
indicate detected pedestrians, blue boxes indicate detected
bicycles, and purple boxes indicate unknown objects.

Following this, we describe the property specification that
the AV is supposed to satisfy, e.g. the avoidance of collisions
or adherence to traffic laws. Note that we use the original
traffic laws from [43] as input when the property is an STL-
based traffic law specification. For example, if we are testing
the property ‘no collisions’, we would state:

(rule) You are supposed to follow the following rule: Avoid
collisions with other objects.

Then, we specify the time gap between the violation moment
and the near-miss moment, and clarify that the former image
depicts the violation:

(sequence) The second picture was taken 4 seconds later
than the first picture, capturing the moment when the rule
violation occurred.

Finally, we provide some initial settings of the current ADS
to assist the MLLM in making decisions:

(default) In the original ADS, the initial settings are:
max planning speed = 72km/h, ...

C. µDrive Script Generation

The driving strategy repairs generated by the MLLM must
be in the correct format, i.e. pertaining to the µDrive grammar
in Section II-C. This is challenging to achieve with a language
model alone, as they have the potential to hallucinate and
make mistakes. MLLMs such as ChatGPT-4, however, have
added support for function calling [36], which enables users
to connect the models with external tools and design integrated
workflows. Additionally, OpenAI’s introduction of ‘Structured
Outputs’ ensures that the arguments generated by the model
adhere precisely to a specified JSON Schema, as defined by
the user in the function call.

In FIXDRIVE, we implemented function calling based on a
structured JSON Schema that describes the syntax of µDrive
programs. This schema guides the MLLM to produce out-
puts that are always structured as syntactically valid µDrive
programs, including all parameters and constructs mandated
by the full µDrive grammar. By leveraging this function, we

achieve a reliable and structured generation of µDrive scripts
that align with expected syntax. For an example of function
calling with our JSON Schema, please see our repository [44].

Our function is designed with several key principles in
mind: 1) Structural Integrity: we ensure that the structure of
the output µDrive program always adheres to the syntax of
µDrive. Specifically, each program must include one trigger,
zero or more conditions, one or more actions, and at most
one exit trigger. The sequence is strictly enforced, i.e. trigger,
conditions, actions, followed by the exit trigger if it exists.
2) Comprehensive Descriptions: to help the MLLM fully
understand the meaning and functionality of each element, we
add detailed descriptions to all events, conditions, and actions
in natural language. These descriptions are sourced from the
official documents of ADS and µDrive to ensure accuracy and
clarity. 3) Clear Parameter Definitions: the unit parameters
within events, conditions, and actions are clearly defined to
avoid any potential misunderstandings. This precision helps
the MLLM to generate accurate and contextually appropriate
programs. By adhering to these design principles, integrating
µDrive with an MLLM facilitates the creation of actionable
and precise programs, that can then be applied in subsequent
deployments of the ADS to improve its driving strategy.
For more information on our prompts, function calling, and
implementation details, please refer to the source code [44].

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

We have implemented FIXDRIVE for Apollo 9.0 [37] (the
latest version at the time of our experiments) and the widely-
used MLLM ChatGPT (version ChatGPT 4 Turbo). The sim-
ulator utilised in our experiments is the official Dreamview
Plus [45], provided by Apollo 9.0.

Our framework, FIXDRIVE, comprises three main compo-
nents: 1) Trajectory Record Analysis Tool: this tool identifies
the specific time step at which the quantitative semantics
of the trace fall below a specified threshold according to a
given specification (such as no collisions and adherence to
traffic rules in different countries). It enables us to precisely
pinpoint the exact moment a violation occurs and to detect
near-miss situations where a violation is likely but has not
yet occurred. 2) Prompt Generator: this component generates
both the text prompt and captures a visualisation of the
driving conditions at specific time steps. It organises this
information into function calls for ChatGPT. Essentially, the
the prompt generator automatically creates the input provided
to the MLLM based on specified criteria and recorded data.
3) Translation and Verification: the response from the MLLM
is translated into a domain-specific language, µDrive, which
outlines general driving strategy repairs (e.g. stopping when a
pedestrian is ahead). An additional validity check ensures that
the syntax is correct. These strategy repairs are then verified
using the simulator to ensure they enable the autonomous
vehicle to successfully navigate the given scenario.

Our implementation leverages some components from pre-
vious work. Specifically, from LawBreaker [8], we utilise

its specification language and the corresponding verification
algorithm. From µDrive [34], we employ its DSL and backend
support for applying new driving strategies in Apollo.

B. Evaluation

Our evaluation considers four Research Questions (RQs):
• RQ1: Does FIXDRIVE effectively repair the driving be-

haviour of an ADS?
• RQ2: Are these driving strategy repairs applicable to

common driving scenarios?
• RQ3: How much effort is required to compute repairs?
• RQ4: What is the impact of using images for critical

moments instead of text?
RQ1 considers whether FIXDRIVE achieves its primary goal
of being able to utilise MLLMs to effectively repair the
driving behaviour of an ADS following a violation event. RQ2
investigates the effectiveness of FIXDRIVE’s driving strategy
repairs, based on a small sample of records, in improving
AV performance across different scenarios. RQ3 examines
the computational effort needed to utilise FIXDRIVE. RQ4
validates the effects of using images in the prompt instead of
ground-truth values in textual prompts. Our experiments utilise
both Apollo 9.0 and the Apollo Simulation Platform, referred
to as Apollo Studio [46]. To account for simulator randomness
(e.g. due to concurrency) each experiment is repeated 20 times,
and we present the averages. We utilise a Linux machine
(Ubuntu 20.04.5 LTS) with 32GB of RAM, an Intel i7-10700k
CPU, and an RTX 2080Ti graphics card.
RQ1: Does FIXDRIVE effectively repair the driving be-
haviour of an ADS? To answer this question, we employed
a benchmark of scenarios provided by [34] where Apollo
consistently violates specifications. Table I reports the ef-
fectiveness of our approach in preventing these violations
compared to the original Apollo and the runtime enforcement
method REDriver [10]. Note that the threshold for FIXDRIVE
is set to 15, determined by an empirical experiment discussed
later in this section. The ‘Law’ column in the table denotes the
specific property specification under which the AV is tested.
We adopted the formalisation of traffic laws reported in [8]
as part of our property specifications and evaluated whether
FIXDRIVE can be applied so that the ADS follows them.
Specifically, we adopted four rules sourced from the Regu-
lations for the Implementation of the Road Traffic Safety Law
of the People’s Republic of China [43]: Law38, Law44, Law46,
and Law53. These rules encompass regulations concerning
traffic lights (yellow, green, red), speed limits for the fast lane,
speed limits under adverse weather conditions (such as fog,
rain, and snow), and managing traffic jam, respectively. Addi-
tionally, we applied the property specifications ‘no collision’
and ‘finish journey’ to evaluate the AV as well. The detailed
property specifications of these two rules can be expressed as:

no collision ≡ □(¬NearestNPC(0.1))

finish journey ≡ □(♢[0,200](speed > 0.5) ∨ dest(5))

Here, the specification ‘no collision’ requires that the dis-
tance to other objects always be greater than 0.1 metres

TABLE I: Performance comparison of FIXDRIVE, REDriver, and Apollo
Law Scene Driver Fix Pass Robustness Context

no collision

S1
Apollo - 0% -0.1 The AV entered the intersection during a green light vehicles,

REDriver - 0% -0.1 but failed to yield to the straight-moving
FIXDRIVE 30% 100% 1.37 resulting in an accident.

S2
Apollo - 0% -0.1 The AV fail to yield to the oncoming straight-through traffic

REDriver - 0% -0.1 at the stop sign and proceed to make a left turn at the intersection,
FIXDRIVE 50% 100% 4.41 resulting in an accident.

Law38

S3
Apollo - 20% 10.7, 0.0, 0.0 The AV started and entered the intersection when the traffic light

REDriver - 60% 11.55, 0.5, 0.5 was yellow.
FIXDRIVE 45% 100% 12.97, 0.5, 0.48

S4
Apollo - 0% 4.7, 0.5, 0.0

The AV entered the intersection on a red light.REDriver - 85% 11.52, 0.5, 0.5
FIXDRIVE 100% 100% 2.84, 0.5, 0.5

Law44 S5
Apollo - 20% -19.98 The AV is traveling in the fast lane and come to a stop due to

REDriver - 100% 4.34 an static obstacle (failure to change lanes to an available
FIXDRIVE 20% 100% 9.58 lane on the right), ultimately failing to reach its destination.

Law46 S6
Apollo - 0% 0.0, -0.2 The AV continues to travel at speeds exceeding 30 kilometres

REDriver - 100% 1.00, 1.00 per hour despite fog or rain.
FIXDRIVE 100% 100% 1.23, 1.23

Law53 S7
Apollo - 0% 0.0

The AV is approaching a junction with traffic jam.REDriver - 0% 0.0
FIXDRIVE 50% 100% 1.0

finish journey S8
Apollo - 0% -0.42 The AV failed to overtake a stationary vehicle ahead and became

REDriver - 0% -0.43 stuck.
FIXDRIVE 15% 100% 5.17

(i.e. ¬NearestNPC(0.1)). The specification ‘finish jour-
ney’ requires that the AV must not stop on the road
(i.e. ♢[0,200](speed > 0.5)), unless it is close to the destination
(i.e. dest(5)). We refer the readers to our repository in [44]
to see all the detailed specifications. The ‘Fix’ column in
Table I shows the proportion of successful driving strategy
repairs generated by FIXDRIVE. A driving strategy repair is
deemed successful only if it ensures that the AV causes no
violations. To evaluate this, we repeat the generation process
20 times for each driving record, generating one unique driving
suggestion per run. Each suggestion is then applied to the
autonomous vehicle and tested for effectiveness in the same
scenario through simulation, allowing us to assess whether
the repair successfully resolves the failure. Our empirical
analysis indicates that while different suggestions may be
generated for the same record, they typically converge into
a limited set of outcomes. Consequently, 20 repetitions are
empirically sufficient to capture all possible outcomes. The
‘Pass’ column indicates the proportion of runs that comply
with traffic rules. It signifies the success rate of each effective
suggestion, which is always 100% for FIXDRIVE. Note that
the MLLM generates varied suggestions across runs due
to inherent uncertainty. However, empirical analysis shows
that most effective suggestions are consistent across trials.
Therefore, we select the most frequently successful suggestion
to determine the final values in the ‘Pass’ and ‘Robustness’
column. The ‘Robustness’ column in the table illustrates the
robustness of the AVs regarding current traffic regulations.
The robustness value is calculated as the average performance
of these effective suggestions. For example, the three values
for the specification Law38 indicate the robustness values for
green light, yellow light, and red light related traffic laws,
respectively. Specifically, the robustness value measures how
closely the vehicle trajectory adheres to these rules. A higher
robustness value indicates a lower likelihood of violating
traffic regulations, whereas a lower value indicates a higher

rule "S1 rule1"
trigger

always
condition

front_vehicle_closer_than(10)
then

follow_dist(10)
yield_dist(15)
overtake_dist(20)
obstacle_stop_dist(10)
obstacle_decrease_ratio(1)

end

rule "S1 rule2"
trigger

always
condition

is_traffic_light(red)
traffic_light_distance_leq(10)

then
traffic_light_stop_dist(5)

end

Fig. 6: µDRIVE driving strategy repair scripts for S1

likelihood of imminent violation. A value less than or equal
to 0 indicates a violation of the corresponding traffic rule.
Furthermore, if a regulation comprises multiple sub-rules, the
robustness for each sub-rule is sequentially presented.

As shown in Table I, Apollo’s success rate in these scenarios
consistently remains below 50%, often reaching 0%. While
REDriver can prevent some of the violations sometimes, there
are still instances it cannot address. In contrast, the repairs
by FIXDRIVE enable the AV to completely avoid accidents
and violations. This is because REDriver focuses on a narrow
case-by-case view, making decisions based only on current
perception and prediction, and thus heavily depends on the
accuracy of the ADS’s original predictions, which may be
wrong. For example, in scenario S1 where an AV fails to
yield to a straight-moving vehicle, REDriver cannot prevent
the violation because it cannot reverse the decision ‘not to
yield’, which was based on the prediction that the vehicle
would not obstruct its path. In contrast, in the driving strategy
repairs generated by FIXDRIVE, as shown in Figure 6, the
first program dynamically adjusts parameters such as follow
distance, yield distance, overtake distance, stop distance, and
obstacle response rate when a vehicle is within 10 metres
ahead. Additionally, the second program ensures safety by
adjusting the AV’s stop distance when approaching a red
light and the distance to the stop line is less than 10 me-
tres. This adaptive approach, based on a global perspective,
continuously modifies the vehicle’s driving style as conditions
change, thereby effectively avoiding accidents before they

TABLE II: Effectiveness of FIXDRIVE across varying δ
δ S1 S2 S3 S4 S5 S6 S7 S8
1 × × × ✓ ✓ ✓ ✓ ×
5 × × ✓ ✓ ✓ ✓ ✓ ×
10 × ✓ ✓ ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
20 × ✓ ✓ ✓ ✓ ✓ ✓ ×
25 × ✓ ✓ ✓ ✓ ✓ ✓ ×
30 × ✓ ✓ ✓ ✓ ✓ ✓ ×

occur. Due to the inherent uncertainty of the generative model,
the proportion of successful repairs sometimes falls below
50% (as shown in ‘Fix’ column). However, our evaluation of
FIXDRIVE’s time and cost efficiency in RQ3 demonstrates that
generating each driving strategy repair is both time-efficient
and cost-effective, mitigating this issue.

To further investigate RQ1, we designed a second experi-
ment to examine how varying FIXDRIVE’s thresholds impact
its effectiveness. Recall that the threshold defines the fault
tolerance of FIXDRIVE, determining what constitutes a near-
miss situation, as discussed in Section III-A. The detailed
effectiveness evaluation for all thresholds is shown in Table II.
In this table, the first column (‘δ’) denotes the threshold value,
ranging from 1 to 30. The subsequent columns represent
scenarios S1 to S8 as mentioned above. If FIXDRIVE can
provide driving strategy repairs that help the AV resolve the
encountered problem, i.e. satisfy the corresponding specifi-
cation within 10 queries, we mark it with a ✓. Otherwise,
we mark it with a ×. As show in Table II, the threshold
value significantly impacts FIXDRIVE’s effectiveness in cer-
tain scenarios. When the threshold δ is very small, such as 1
or 5, the near-miss moments are too close to the violation
moment, providing insufficient information about why the
violation occurs. Conversely, if δ is too large, such as 30, the
near-miss moment may not provide any useful information, as
there may be no indication of a potential violation. This can
lead to FIXDRIVE’s failure to deliver effective programs. For
example, in scenario S1, where the AV is making a right turn
and fails to yield to vehicles going straight, the timing of the
threshold is critical. When the threshold is set to values below
10, the AV is already impeding the straight-moving vehicles
at the near-miss moment, making it difficult to implement
effective changes. Conversely, when the threshold is set to
20, the AV has not started the right turn yet at the near-miss
moment, and the potential problem has not yet arisen. In some
scenarios, FIXDRIVE can be effective for all threshold values
if the near-miss moment does not provide critical information.
For example, in scenario S6, where the vehicle exceeds 30
km/h in snowy conditions, the critical information is that the
AV exceeds 30 km/h at the violation moment. Since snow
conditions remain consistent, the choice of near-miss moment
does not affect FIXDRIVE’s effectiveness.
RQ2: Are these driving strategy repairs applicable to com-
mon driving scenarios? To answer this question, we applied
all the µDrive driving repair scripts generated by FIXDRIVE
across the eight scenarios mentioned above. In total, there
are 22 different driving strategy repair programs. For detailed

TABLE III: Performance of FIXDRIVE in official scenarios
Map Num Driver Finish Accident

Sunnyvale 114 Apollo 108 7
FIXDRIVE 112 6

SanMateo 103 Apollo 94 1
FIXDRIVE 95 1

Apollo Virtual 52 Apollo 42 1
FIXDRIVE 46 1

information on these driving strategy repair programs, we
refer readers to [44]. We applied these strategy repairs to all
the official scenarios provided by Apollo across three maps:
Sunnyvale, San Mateo, and Apollo Virtual. For the Sunnyvale
map, there are 114 different scenarios. The San Mateo map
contains 103 different scenarios, while the Apollo Virtual
map includes 52 different scenarios. These scenarios cover
most situations encountered during daily city driving, such
as passing traffic lights, yielding to pedestrians and priority
vehicles, cutting in, changing lanes, overtaking, and making
U-turns. For detailed descriptions of these official scenarios
provided by Apollo, refer to [46].

First, we compared Apollo with FIXDRIVE (i.e. Apollo
with the driving repairs applied) regarding Completion Rate
and Accidents, as shown in Table III. Regarding Completion
Rate, we evaluated whether the AV successfully reached the
destination and completed the journey, as indicated in the
‘Finish’ column. All scenarios completed by Apollo were
also completed by FIXDRIVE. Additionally, FIXDRIVE could
finish extra scenarios where Apollo got stuck. For example,
in some scenarios, Apollo failed to overtake a stationary
vehicle ahead because it followed too closely, while FIXDRIVE
completed these scenarios by maintaining a larger following
distance. Regarding Accidents, we examined the number of
accidents caused by Apollo and FIXDRIVE, as shown in the
‘Accident’ column. FIXDRIVE not only avoided causing new
accidents but also prevented an accident in one scenario. It
is important to note that all remaining accidents were not
caused by the AV. They were caused by ‘irrational’ vehicles or
pedestrians colliding with the driver from behind. Typically,
this occurred when the AV had reached its destination and
stopped, and another vehicle hit it from the back.

To further investigate RQ2, we conducted an in-depth
analysis. Specifically, for scenarios that Apollo and FIXDRIVE
successfully completed, we analysed various aspects of the
trajectories, including the speed and acceleration at each point,
the distance to the nearest obstacle, the total duration of vehicle
stops, and the energy consumption, as shown in Table IV.
Regarding Speed and Acceleration, we compared the speed
and acceleration between Apollo and FIXDRIVE, as shown in
the ‘Speed(m/s)’ and ‘Acceleration(m/s2)’ columns. Both the
average and maximum speeds were examined, with the values
in the table representing the averages across all scenarios.
Overall, the AV operated at slower speeds under Apollo
compared to FIXDRIVE. However, this does not imply that
FIXDRIVE drives more aggressively than Apollo. In fact,
FIXDRIVE only increased its speed when there were no other
vehicles or pedestrians nearby, ensuring safe and considerate
driving behaviour. Regarding Obstacle Distance, we examined

TABLE IV: Performance comparison of FIXDRIVE and Apollo in official scenarios
Map Num Driver Speed(m/s) Accelerate(m/s2) Obstacle Distance(m) Stop Time(s) Energy(J)Ave Max Ave Max Ave Min

Sunnyvale 108 Apollo 3.31 7.86 0.38 1.91 51.43 6.74 15.56 132840.52
FIXDRIVE 3.76 8.29 0.46 2.19 51.71 6.90 12.63 147434.25

SanMateo 94 Apollo 2.58 6.28 0.41 1.47 31.27 6.85 6.95 70570.81
FIXDRIVE 2.84 6.20 0.44 1.80 30.97 7.45 4.48 69660.75

Apollo Virtual 42 Apollo 4.10 8.43 0.43 1.75 78.48 4.06 13.95 157633.50
FIXDRIVE 4.59 9.18 0.50 1.95 78.22 4.39 6.00 210024.93

the average and maximum distances to other objects, as shown
in the ‘Obstacle Distance(m)’ column. The results indicated
that FIXDRIVE maintained a greater distance from other vehi-
cles despite its higher speed, demonstrating both efficiency and
safety. Regarding Stop Time, we examined the time that the AV
stopped on the road, as shown in the ‘Stop Time(s)’ column.
The results indicated that FIXDRIVE had less stop time than
Apollo, suggesting a smoother driving experience. Regarding
Energy, we provided a rough estimate of the average energy
consumption for Apollo and FIXDRIVE. The energy was
calculated using the formula:

∑n−1
t=1

1
2m(v2t+1 − v2t), where

m is the vehicle’s mass (1500 kg), n is the length of the
trace, and vt is the speed of the AV at time step t. This
formula measures the energy consumption based on changes in
speed. FIXDRIVE consumed more energy than Apollo because
it generally travelled at higher speeds, which involved more
frequent acceleration and deceleration processes.

Based on these detailed checks, we conclude that the driving
strategy repairs provided by FIXDRIVE not only promote
smoother driving but also contribute to fewer accidents, under-
scoring its suitability for various common driving scenarios.

TABLE V: Computational effort required by FIXDRIVE
step S1 S2 S3 S4 S5 S6 S7 S8
trace 329s 351s 281s 127s 61s 63s 395s 529s

localisation 187s 200s 167s 156s 134s 155s 205 168
prompt 0.22s 0.24s 0.21s 0.23s 0.16s 0.17s 0.16s 0.22

query
time 10.6s 11.4s 14.1s 8.9s 14.9s 8.6s 23.3s 10.8s
input 7352 7352 7436 7435 7508 7498 7504 7350
output 179 163 121 185 97 81 123 82

overall time 527s 563s 462s 292s 210s 227s 624s 708s
cost($) 0.079 0.078 0.078 0.080 0.078 0.077 0.079 0.076

RQ3: How much effort is required to compute repairs? To
answer this question, we present a detailed breakdown of time
and token consumption (using model ChatGPT 4 turbo) for
FIXDRIVE, as shown in Table V. The ‘step’ column lists all
necessary steps for FIXDRIVE to generate driving strategy
repairs. The ‘trace’ step involves converting a given record
into a trace. The ‘localisation’ refers to identifying near-miss
and violation moments. The ‘prompt’ involves automatically
generating prompts for the LLM input, while ‘query’ denotes
querying the LLM for a response.

We detail the time consumption for each step, all measured
in seconds. For the whole process, the most time-consuming
steps involve two parts: trace generation and moment localisa-
tion. Trace generation takes a few minutes due to the thousands
of time steps within a trace, typically about one hundred time
steps per second. Moment localisation involves calculating the
robustness value multiple times, resulting in relatively high
time consumption. However, since our method is offline, trace
generation and moment localisation need to be performed only

once per test case, making the process efficient for practical
use. For each test case, the whole process typically takes
around 10 minutes to perform, always below 15 minutes, on
a desktop with 32GB of RAM, an Intel i7-10700k CPU, and
an RTX 2080Ti graphics card, which is a manageable effort.

Additionally, we measure the number of tokens required
for querying the LLM. The ‘input’ and ‘output’ rows in the
Table V indicate the average number of input and output
response tokens for ChatGPT 4 turbo. The number of tokens,
including those for images, is calculated using ChatGPT’s
official tool [47]. At the time of experimentation, the direct
cost for 1 million input prompt tokens was $10, while 1 million
output response tokens cost $30. This indicates that each
driving suggestion costs less than $0.08, making it affordable,
as shown in the last row of the table.

TABLE VI: Comparison of FIXDRIVE and a text-only method
Scene performance input token output token cost($)

ours text ours text ours text ours text
S1 30% 5% 7352 8370 179 308 0.079 0.092
S2 50% 0% 7352 7294 163 286 0.078 0.082
S3 45% 5% 7436 8451 121 245 0.078 0.092
S4 100% 15% 7435 7741 185 247 0.080 0.085
S5 20% 0% 7508 8442 97 294 0.078 0.093
S6 100% 100% 7498 7433 81 189 0.077 0.080
S7 50% 20% 7504 10978 123 351 0.079 0.120
S8 15% 0% 7350 7240 82 241 0.076 0.080

RQ4: What is the impact of using images for critical
moments instead of text? FIXDRIVE utilises visualisations
of violation and near-miss moments as part of its prompt for
the MLLM. But what would happen if we described these
scenarios using only textual prompts instead? To explore this
question, we establish a text-only prompt-based method as our
baseline. To ensure a fair comparison, we keep all other design
elements consistent with FIXDRIVE, except that descriptions
of the violation and near-miss moments are provided solely in
text. We extract key information from records following the
LawBreaker methodology [8], crafting detailed descriptions
for each variable to ensure clarity. These descriptions are for-
matted and refined using ChatGPT-4 Turbo, optimising them
for MLLM interpretation. An example prompt is available in
our repository for reference [44].

Table VI compares FIXDRIVE and the text-only method
in terms of performance, input/output token usage, and cost.
The performance threshold, set at 15 based on empirical
experimentation (discussed in RQ1), includes 20 repetitions
per scenario. The ‘Performance’ column shows the proportion
of successful driving strategy repairs generated by FIXDRIVE
(referred to as ‘ours’) and the text-only method (referred to as
‘text’). Here, success indicates that the AV correctly follows
the traffic rule after the repair. The ‘Input/Output Tokens’
columns display the average input and output token counts

per query. As shown, using images significantly enhances per-
formance while reducing costs per query. Images effectively
convey spatial details that are challenging to capture in text
yet are easily processed by the vision modality. Interestingly,
image prompts consume fewer input tokens than detailed
text descriptions. Moreover, text-heavy prompts often result
in more output tokens, suggesting that the MLLM is more
prone to generating extraneous driving strategy repairs when
overloaded with extensive text inputs.
Threats to Validity. The inherent randomness of generative
models and the limitations of the original ADS introduce
threats to validity. First, FIXDRIVE cannot guarantee the
effectiveness of every generated suggestion. To mitigate this,
we generate 20 driving strategy repairs per case and evaluate
them in an AV simulator, leveraging fast and cost-effective
querying for robustness.

Some scenarios remain beyond FIXDRIVE’s full control,
such as rear-end collisions, where following distance depends
on the trailing vehicle. While risk-reduction measures exist,
complete prevention is challenging. Moreover, FIXDRIVE may
propose valid repairs that prove ineffective due to ADS design
constraints. For instance, Apollo’s overly cautious behaviour
might prevent overtaking, even when FIXDRIVE suggests it.
Refining text prompts can help address such issues.

Integrating µDrive into an ADS poses challenges, but once
incorporated, it streamlines further modifications, enabling
efficient system refinement through various µDrive scripts.

V. RELATED WORK

AVs have been the subject of extensive research in recent
years, leading to significant advancements in their capabilities.
Early efforts in AV development focused on improving core
functionalities such as perception, planning, and control [48],
[49]. These areas are critical for enabling AVs to navigate
complex environments safely. However, the limitations of
AVs compared to human drivers, particularly regarding adapt-
ability and decision-making in unpredictable scenarios, have
prompted further research into more intelligent systems.

Several approaches have been proposed to address chal-
lenges encountered by AVs at runtime. Rule-based systems
have been used to ensure adherence to safety and traffic regula-
tions. For example, runtime enforcement mechanisms monitor
the vehicle’s actions [15], [16], [17] to prevent collisions
and other unsafe behaviours [11], [12], [13], [14]. Similarly,
gradient-based algorithms, such as those in REDriver [10],
offer real-time solutions for handling property specification
violations. While these methods provide valuable safety nets,
their utility is limited by their narrower focus on specific tasks.

Recognising the expertise of human drivers, researchers
have explored various ways to model and replicate human
driving behaviour in AVs. Imitation learning has emerged
as a prominent technique for training AVs to mimic expert
human drivers [20], [21], [23]. These methods aim to capture
the nuanced decision-making processes of human drivers to
improve AV performance. However, challenges such as limited
training data and the complexity of human driving behaviour

have hindered the generalisation of these approaches [24].
As a result, there is a growing interest in developing more
advanced systems that can better bridge the gap between
human intelligence and AV technology.

The advent of MLLMs has opened new avenues for en-
hancing AV intelligence. MLLMs, with their advanced text and
image understanding capabilities, offer promising solutions for
interpreting and replicating human driving behaviour. They
can provide natural language explanations for their decisions,
thereby enhancing transparency and trust [28]. Existing re-
search has explored the use of MLLMs in various components
of AVs, including perception, planning, and control [29],
[30], [31]. For instance, LLM-Driver [29] abstracts driving
scenarios into 2D object-level vectors and directly applies
the LLM output as control commands for the AV system.
GPT-Driver [30] translates motion planner inputs and outputs
into language tokens, utilising LLMs as motion planners for
AVs. Wen et al. [31] evaluated the potential of ChatGPT-4
as an autonomous driving agent, demonstrating its advanced
scene understanding and causal reasoning capabilities. These
works primarily employ LLMs for object perception, motion
planning, and actuation control within AV systems. Despite
their potential, the inherent delays and uncertainties associated
with generative models pose challenges for real-time AV
operations. Additionally, the gap between natural language and
control commands remains a significant hurdle.

FIXDRIVE, in contrast, is a framework that generates driv-
ing strategy repairs for AVs. By providing a general offline
solution, it ensures that MLLMs can generate general driving
suggestions that are directly applicable to AVs. Through
comprehensive testing in various scenarios, FIXDRIVE has
demonstrated its effectiveness in improving AV decision-
making and adherence to property specifications, offering an
advancement to the field of autonomous driving.

VI. CONCLUSION

We have proposed FIXDRIVE, a framework that uses
MLLMs to enhance ADSs by generating intelligent driving
strategy repairs. FIXDRIVE identifies critical moments in
driving scenarios and generates prompts to ensure MLLMs
produce valid suggestions in a DSL, µDrive, for direct appli-
cation in an ADS. Experimental results show that FIXDRIVE
improves ADS performance in various challenging scenarios,
providing efficient and cost-effective driving suggestions. This
framework represents a step towards bridging the gap between
human expertise and automated driving technology, enhancing
the adaptability and reliability of AVs.

ACKNOWLEDGMENT

This research is supported by the Ministry of Education,
Singapore under its Academic Research Fund Tier 3 (Award
ID: MOET32020-0004). Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of the Ministry
of Education, Singapore.

REFERENCES

[1] SAE On-Road Automated Vehicle Standards Committee, “Taxonomy
and definitions for terms related to driving automation systems for on-
road motor vehicles,” SAE International: Warrendale, PA, USA, 2021.

[2] Waymo. (2025) Waymo Driver. https://waymo.com/waymo-driver/. On-
line; accessed Feb 2025.

[3] Baidu. (2025) Apollo. https://www.apollo.auto/. Online; accessed Feb
2025.

[4] TuSimple. (2024) Autonomous driving technology designed for trucks.
https://www.tusimple.com/technology/. Online; accessed Nov 2024.

[5] Z. Wan, J. Shen, J. Chuang, X. Xia, J. Garcia, J. Ma, and Q. A. Chen,
“Too afraid to drive: Systematic discovery of semantic DoS vulnerability
in autonomous driving planning under physical-world attacks,” in NDSS.
The Internet Society, 2022.

[6] S. K. Bashetty, H. B. Amor, and G. Fainekos, “DeepCrashTest: Turning
dashcam videos into virtual crash tests for automated driving systems,”
in ICRA. IEEE, 2020, pp. 11 353–11 360.

[7] G. Li, Y. Li, S. Jha, T. Tsai, M. B. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. K. Iyer, “AV-FUZZER: Finding safety violations in autonomous
driving systems,” in ISSRE. IEEE, 2020, pp. 25–36.

[8] Y. Sun, C. M. Poskitt, J. Sun, Y. Chen, and Z. Yang, “LawBreaker: An
approach for specifying traffic laws and fuzzing autonomous vehicles,”
in ASE. ACM, 2022, pp. 62:1–62:12.

[9] Y. Zhou, Y. Sun, Y. Tang, Y. Chen, J. Sun, C. M. Poskitt, Y. Liu, and
Z. Yang, “Specification-based autonomous driving system testing,” IEEE
Trans. Software Eng., vol. 49, no. 6, pp. 3391–3410, 2023.

[10] Y. Sun, C. M. Poskitt, X. Zhang, and J. Sun, “REDriver: Runtime
enforcement for autonomous vehicles,” in ICSE. ACM, 2024, pp.
176:1–176:12.

[11] J. Grieser, M. Zhang, T. Warnecke, and A. Rausch, “Assuring the
safety of end-to-end learning-based autonomous driving through runtime
monitoring,” in DSD. IEEE, 2020, pp. 476–483.

[12] D. K. Hong, J. Kloosterman, Y. Jin, Y. Cao, Q. A. Chen, S. A. Mahlke,
and Z. M. Mao, “AVGuardian: Detecting and mitigating publish-
subscribe overprivilege for autonomous vehicle systems,” in EuroS&P.
IEEE, 2020, pp. 445–459.

[13] K. Cheng, Y. Zhou, B. Chen, R. Wang, Y. Bai, and Y. Liu, “Guardauto: A
decentralized runtime protection system for autonomous driving,” IEEE
Trans. Computers, vol. 70, no. 10, pp. 1569–1581, 2021.

[14] S. Shankar, U. V. R, S. Pinisetty, and P. S. Roop, “Formal runtime
monitoring approaches for autonomous vehicles,” in OVERLAY’20, ser.
CEUR Workshop Proceedings, vol. 2785. CEUR-WS.org, 2020, pp.
89–94.

[15] M. Mauritz, F. Howar, and A. Rausch, “Assuring the safety of advanced
driver assistance systems through a combination of simulation and
runtime monitoring,” in ISoLA (2), ser. LNCS, vol. 9953, 2016, pp.
672–687.

[16] B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, “LOLA: Run-
time monitoring of synchronous systems,” in TIME. IEEE Computer
Society, 2005, pp. 166–174.

[17] K. Watanabe, E. Kang, C. Lin, and S. Shiraishi, “Runtime monitoring
for safety of intelligent vehicles,” in DAC. ACM, 2018, pp. 31:1–31:6.

[18] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, “End-to-
end autonomous driving: Challenges and frontiers,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 46, no. 12, pp. 10 164–10 183, 2024.

[19] A. Prakash, K. Chitta, and A. Geiger, “Multi-modal fusion transformer
for end-to-end autonomous driving,” in CVPR. Computer Vision
Foundation / IEEE, 2021, pp. 7077–7087.

[20] K. Sama, Y. Morales, H. Liu, N. Akai, A. Carballo, E. Takeuchi, and
K. Takeda, “Extracting human-like driving behaviors from expert driver
data using deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp.
9315–9329, 2020.

[21] J. Wei, J. M. Dolan, and B. Litkouhi, “A learning-based autonomous
driver: Emulate human driver’s intelligence in low-speed car following,”
in Unattended Ground, Sea, and Air Sensor Technologies and Applica-
tions XII, vol. 7693. SPIE, 2010, pp. 93–104.

[22] L. Xu, J. Hu, H. Jiang, and W. Meng, “Establishing style-oriented
driver models by imitating human driving behaviors,” IEEE Trans. Intell.
Transp. Syst., vol. 16, no. 5, pp. 2522–2530, 2015.

[23] D. Xu, Z. Ding, X. He, H. Zhao, M. Moze, F. Aioun, and F. Guillemard,
“Learning from naturalistic driving data for human-like autonomous

highway driving,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 12,
pp. 7341–7354, 2021.

[24] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on
imitation learning techniques for end-to-end autonomous vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 14 128–14 147,
2022.

[25] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in NeurIPS,
2020.

[26] OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023.
[27] S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, and E. Chen, “A survey on

multimodal large language models,” CoRR, vol. abs/2306.13549, 2023.
[28] C. Cui, Y. Ma, X. Cao, W. Ye, Y. Zhou, K. Liang, J. Chen, J. Lu, Z. Yang,

K. Liao, T. Gao, E. Li, K. Tang, Z. Cao, T. Zhou, A. Liu, X. Yan, S. Mei,
J. Cao, Z. Wang, and C. Zheng, “A survey on multimodal large language
models for autonomous driving,” in WACV (Workshops). IEEE, 2024,
pp. 958–979.

[29] L. Chen, O. Sinavski, J. Hünermann, A. Karnsund, A. J. Willmott,
D. Birch, D. Maund, and J. Shotton, “Driving with LLMs: Fusing object-
level vector modality for explainable autonomous driving,” in ICRA.
IEEE, 2024, pp. 14 093–14 100.

[30] J. Mao, Y. Qian, H. Zhao, and Y. Wang, “GPT-Driver: Learning to drive
with GPT,” CoRR, vol. abs/2310.01415, 2023.

[31] L. Wen, X. Yang, D. Fu, X. Wang, P. Cai, X. Li, T. Ma, Y. Li, L. Xu,
D. Shang, Z. Zhu, S. Sun, Y. Bai, X. Cai, M. Dou, S. Hu, B. Shi, and
Y. Qiao, “On the road with GPT-4V(ision): Early explorations of visual-
language model on autonomous driving,” CoRR, vol. abs/2311.05332,
2023.

[32] Autoware.AI, “Autoware.AI,” www.autoware.ai/, 2025, online; accessed
Feb 2025.

[33] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in ICSE. IEEE Computer Society, 2012, pp. 3–13.

[34] K. Wang, C. M. Poskitt, Y. Sun, J. Sun, J. Wang, P. Cheng, and
J. Chen, “µDrive: User-controlled autonomous driving,” CoRR, vol.
abs/2407.13201, 2024.

[35] OpenAI. (2025) ChatGPT. https://openai.com. Online; accessed Feb
2025.

[36] OpenAI, “Function calling,” https://platform.openai.com/docs/guides/
function-calling, 2025, online; accessed Feb 2025.

[37] Baidu, “Apollo 9.0,” https://github.com/ApolloAuto/apollo/releases/tag/
v9.0.0, 2023, online; accessed Feb 2025.

[38] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in FORMATS/FTRTFT, ser. LNCS, vol. 3253. Springer,
2004, pp. 152–166.

[39] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar,
P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke, K. Hausman,
M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence, “PaLM-
E: An embodied multimodal language model,” in ICML, ser. Proceedings
of Machine Learning Research, vol. 202. PMLR, 2023, pp. 8469–8488.

[40] H. Sun, C. M. Poskitt, Y. Sun, J. Sun, and Y. Chen, “ACAV: A frame-
work for automatic causality analysis in autonomous vehicle accident
recordings,” in ICSE. ACM, 2024, pp. 102:1–102:13.

[41] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A.
Seshia, “Robust online monitoring of signal temporal logic,” Formal
Methods Syst. Des., vol. 51, no. 1, pp. 5–30, 2017.

[42] D. Nickovic and T. Yamaguchi, “RTAMT: Online robustness monitors
from STL,” in ATVA, ser. LNCS, vol. 12302. Springer, 2020, pp. 564–
571.

[43] Chinese Government, “Regulations for the implementation of the road
traffic safety law of the People’s Republic of China,” http://www.gov.cn/
gongbao/content/2004/content 62772.htm, 2021, online; accessed Feb
2025.

[44] “FixDrive source code & supplementary materials,” 2025. [Online].
Available: https://github.com/lawbreaker2022/FixDrive2025

[45] Baidu, “Dreamview Plus,” https://github.com/ApolloAuto/apollo/tree/
master/modules/dreamview plus, 2024, online; accessed Feb 2025.

[46] Baidu, “Apollo Studio,” https://apollo.baidu.com/workspace, 2025, on-
line; accessed Feb 2025.

https://waymo.com/waymo-driver/
https://www.apollo.auto/
https://www.tusimple.com/technology/
www.autoware.ai/
https://openai.com
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://github.com/ApolloAuto/apollo/releases/tag/v9.0.0
https://github.com/ApolloAuto/apollo/releases/tag/v9.0.0
http://www.gov.cn/gongbao/content/2004/content_62772.htm
http://www.gov.cn/gongbao/content/2004/content_62772.htm
https://github.com/lawbreaker2022/FixDrive2025
https://github.com/ApolloAuto/apollo/tree/master/modules/dreamview_plus
https://github.com/ApolloAuto/apollo/tree/master/modules/dreamview_plus
https://apollo.baidu.com/workspace

[47] OpenAI, “Tokenizer,” https://platform.openai.com/tokenizer, 2025, on-
line; accessed Feb 2025.

[48] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. R. Pratt, M. Sokolsky, G. Stanek,
D. M. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully
autonomous driving: Systems and algorithms,” in Intelligent Vehicles
Symposium. IEEE, 2011, pp. 163–168.

[49] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE Access, vol. 8, pp. 58 443–58 469, 2020.

https://platform.openai.com/tokenizer

	Introduction
	Background and Problem
	Overview of ADSs
	Specifying Safety Properties
	Specifying Driving Behaviours
	Multimodal Large Language Models (MLLMs)
	The Problem

	Our Approach
	Problem Localisation
	Prompt Generation
	Drive Script Generation

	Implementation and Evaluation
	Implementation
	Evaluation

	Related Work
	Conclusion
	References

