K-ST: A Formal Executable Semantics of the
Structured Text Language for PLCs

Kun Wang, Jingyi Wang, Christopher M. Poskitt, Xiangxiang Chen, Jun Sun, and Peng Cheng

Abstract—Programmable Logic Controllers (PLCs) are responsible for automating process control in many industrial systems (e.g. in
manufacturing and public infrastructure), and thus it is critical to ensure that they operate correctly and safely. The majority of PLCs are
programmed in languages such as Structured Text (ST). However, a lack of formal semantics makes it difficult to ascertain the
correctness of their translators and compilers, which vary from vendor-to-vendor. In this work, we develop K-ST, a formal executable
semantics for ST in the K framework. Defined with respect to the IEC 61131-3 standard and PLC vendor manuals, K-ST is a high-level
reference semantics that can be used to evaluate the correctness and consistency of different ST implementations. We validate K-ST
by executing 567 ST programs extracted from GitHub and comparing the results against existing commercial compilers (i.e.,
CODESYS, CX-Programmer, and GX Works2). We then apply K-ST to validate the implementation of the open source OpenPLC
platform, comparing the executions of several test programs to uncover five bugs and nine functional defects in the compiler.

Index Terms—Formal executable semantics, PLC programming, Structured text, K framework, OpenPLC.

1 INTRODUCTION

ROGRAMMABLE Logic Controllers (PLCs) are responsi-

ble for automating process control in several modern
industrial systems, e.g. in manufacturing and public infras-
tructure. It is critical to ensure that PLCs are operating cor-
rectly, as any functional or security-related defects may lead
to serious incidents in the system. This has most famously
been demonstrated by the Stuxnet worm [1], while many
other less-known safety and security incidents [2]], [3]], [4]
and potential hazards [5], [6] related to PLCs have resulted
in significant consequences, with an estimated $350,000 in
damage on average [7].

The majority of PLCs are programmed using languages
defined in the IEC 61131-3 open international standard [8].
Programs can be written in graphical languages such as
Function Block Diagrams (FBD), but the standard also de-
fines Structured Text (ST), a fully textual language based
on the idea of organizing code into ‘function blocks” and
designed with a syntax similar to Pascal. ST is a particularly
important IEC 61131-3 language given its utility for data
processing [9], and the fact that snippets of ST are actu-
ally required in FBD and other graphical languages. It is
therefore important that translators and compilers for ST are

o K. Wang, and |. Wang are with the College of Control Science and
Engineering, Zhejiang University, Zhejiang 310027, China.
E-mail: {kunwang_yml, wangjyee}@zju.edu.cn.

o CM. Poskitt is with the School of Computing and Information Systems,
Singapore Management University, Singapore.
E-mail: cposkitt@smu.edu.sg.

o X. Chen is with the College of Control Science and Engineering, Zhejiang
University, Zhejiang 310027, China.
E-mail: chenxiangx@zju.edu.cn.

e | Sun is with the School of Computing and Information Systems,
Singapore Management University, Singapore.
E-mail: junsun@smu.edu.sg.

o P. Cheng is with the College of Control Science and Engineering, Zhejiang
University, Zhejiang 310027, China.
E-mail: lunarheart@zju.edu.cn.

(Corresponding authors: Jingyi Wang and Peng Cheng)

K-ST

executable ST semantics]
567 ST programs e [AN

Consistent?

@or X

CODESYS, GX & CX

Fig. 1: High-level workflow of our approach

correctly implemented and exhibit only expected behaviors
when the code is being run on a PLC.

This has motivated a surge of research on analyzing
and verifying PLC programs [7]], [10], [11], [12], [13], [14],
(15], (16, [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], although few works focus on ST
implementations/compilers. Zhang et al. [24] propose Vet-
PLC, a temporal context-aware, program-based approach
to produce timed event sequences that can be used for
automatic safety vetting. McLaughlin et al. [21]] propose TSV
which translates assembly-level code into an intermediate
language (ILIL) to verify safety-critical code executed on
PLCs. Mader and Wupper [26] translate Instruction List (IL)
code into timed automata [31]. Bauer et al. [25] similarly use
timed automata as the formalism for Sequential Function
Chart (SFC). In [27], the proposed method transforms IL to
Petri-nets [32], and manually builds two additional Petri-
nets for modeling the PLC and its environment. Xiong et
al. [23] propose an algorithm based on variable state analysis
for automatically extracting a Behavior Model (BM) from an
ST program. These works attempt to transform PLC pro-
grams into an intermediate language or another program-
ming language (i.e., C) which is suitable for verifying or
detecting potential issues using existing associated verifiers
or checkers. The issue of these approaches is that they lack
analysis and proof of equivalence in the conversion process. In

addition, the analyses they perform are often limited (since
the existing tools are not designed for PLCs) and do not
offer the feedback to the level of source code. Canet et
al. [22] propose formal semantics for a significant fragment
of the IL language, and a direct coding of this semantics
into a model checking tool. Huuck [28] develops a formal
operational semantics and abstract semantics for IL, which
allows approximating program simulation for a set of inputs
in one simulation run. Blech et al. [10], [11], [30] attempted
to define the formal semantics of the IL and SFC languages
in Coq and NuSMV and, based on that, verify the safety
properties in the code. However, IL is a low level assembly-
like language that has been deprecated from the IEC61131-
3 standard. Furthermore, these studies mainly concentrate
on analyzing the functional aspects of the programs and
may overlook potential vulnerabilities and security risks
introduced during the compilation process.

While extensive research has been conducted on testing
more ‘traditional’ compilers (e.g. vulnerability detection for
GCC and Clang [33], [34], [35]), compilers for PLC lan-
guages such as ST have received much less attention. The
challenges associated with testing the implementation of
a compiler arise from the inherent difficulties of ensuring
its correctness. One particular challenge stems from the
absence of a precise specification of the expected behavior of
a compiler. For most popular programming languages, there
exist multiple purportedly equivalent implementations of
compilers. Compiler testing can take advantage of this by
utilizing these implementations as oracles for conducting
differential testing [36]. However, in the case of the domain-
specific ST language, there is no specific implementation
standard, and different vendors often develop their own
compilers based on their specific requirements. Another
challenge is the semantic complexity of the input and output
languages that compilers handle. The fact that different
vendors develop their own implementations further exacer-
bates this issue. Compiler testing methods based on formal
semantics [37] have shown advantages in addressing these
challenges. With a formal semantics of the ST language, the
expected behavior of ST compilers can be precisely and
unambiguously defined, which can greatly aid in testing
and verifying their correctness.

To the best of our knowledge, a practical and complete
semantics for the ST language does not exist, which makes
it difficult to ascertain the correctness of ST translators
and compilers (e.g. by comparing executions). There are a
number of reasons why such a reference semantics is yet to
emerge. First, there is insufficient documentation defining
or describing the complete features of the ST language [9].
For instance, the official documentation introduces language
features by only a few examples, based on which it is
difficult for readers to fully understand the behavior of the
language. Second, the ST compilers provided by different
vendors (e.g. Allen-Bradley, Siemens) can implement the
language differently, and their closed source solutions make
it difficult to fully assess how they behave systematically
(other than through manual observation). For example,
CODESYS, CX-Programmer, and GX Works2 all produce
negative numbers in the results of negative modulo oper-
ations, even though this behavior is undefined according
to the official documentation. Furthermore, GX Works2

2

supports only 10 basic data types, whereas CODESYS
supports 17 types. Thus, a formal semantics needs to be
‘concrete’” enough to be useful, but ‘high-level” enough to
be general/extendable to the different nuances of vendors’
compilers. A preliminary attempt at defining a high-level
semantics for ST was made by Huang et al. [38]. However,
it falls short of a full reference semantics as it misses several
important features of the language, e.g. certain data types,
and key sentences.

In this work, we develop K-ST, a formal executable ref-
erence semantics for ST in the K framework [39]. Our high-
level semantics is both executable and machine readable,
and can be used by the K framework to generate inter-
preters, compilers, state-space explorers, model checkers,
and deductive program verifiers. Our principal goals for the
design of K-ST are as follows:

1) Validated reference semantics. K-ST is designed
to cover all the main features of ST, and is vali-
dated against hundreds of different real-world ST
programs extracted from GitHub.

2) General and extendable. The semantics is high-
level (rather than tied to a particular compiler), with
the goal of supporting different ST implementations
as well as extensions for vendor-specific functions.

3) Analyses of ST compilers. Most importantly, K-ST
can be used to check the correctness and consistency
of different ST implementations, and thus ensure
that a compiler is not introducing an unintended
behavior or compile-time threat [40], [41] into a
critical industrial system.

Given the absence of complete feature descriptions for
the ST language in official documentation, we not only refer
to the definitions and code samples in the official docu-
ments, but also extensively consult the guidance manuals
provided by multiple vendors to better define the semantics
of the ST language. For example, there is no specific docu-
mentation on how integer overflow is handled in the offi-
cial documents. Through investigating multiple instruction
manuals, we found that existing ST compilers generally use
truncation to handle integer overflow without any warning.
In defining the semantics, we find that the rewriting rule of
the K framework provides a good mechanism for capturing
the unique features of ST. For example, we can rewrite
REPEAT to WHILE to achieve the execution effect of REPEAT.

We validate K-ST by extracting 567 real-world ST code
samples from GitHub and comparing their executions in our
semantics against their executions resulting from various
commercial compilers (i.e., CODESYS, CX-Programmer, and
GX Works2). We find that K-ST is sufficiently complete to
support 509 of these programs (consisting of 26,137 lines of
code) and executes those programs correctly (i.e., producing
the same outputs as the corresponding existing compiler),
with the remaining programs only unsupported due to the
use of certain vendor-specific or hardware-related functions
that we did not yet formalize. Furthermore, to evaluate
the utility of K-ST for testing ST compilers, we compared
the executions of the 567 programs (and several mutants)
under K-ST and OpenPLC [42], a popular open source PLC
program compiler. Through this semantics-based testing, we
are able to uncover five bugs and nine functional defects in

the OpenPLC compiler, all of them are previously unknown.
Fig.|l|summarises the high-level workflow of this process.
In summary, we make three main contributions.

o We propose an executable formal reference semantics
for ST;

o We collect a set of 567 complete ST program samples,
and validate the correctness of our executable seman-
tics by running those programs in the semantics and
via existing compilers (CODESYS, CX-Programmer,
and GX Works2), comparing the results.

e We test OpenPLC, an open source PLC program
compiler, using our proposed semantics, and find
five bugs and nine functional defects.

The remaining part of this paper is organized as follows.
Section 2] introduces the background of ST and the K frame-
work. The proposed executable operational semantics of ST
formalized in K is introduced in Section B Section @ shows
some practical applications of our formal semantics. The
evaluation results of the proposed semantics are introduced
in Section [f] Section [f] summarises some related work, and
Section [7] concludes this work.

2 BACKGROUND

In this section, we briefly introduce the background of the
Structured Text (ST) language and the K framework.

2.1 Structured Text

The Programmable Logic Controller, invented in 1969 by
Dick Morley, is specially designed for applications in indus-
trial environments, e.g. assembly lines, robotic devices, or
public infrastructure. These kinds of applications all require
high reliability and ease of programming.

Early PLCs were represented as a series of logic expres-
sions in some kind of Boolean format. With the development
of programming terminals and the complexity of existing
control procedures, Ladder Diagrams (LD) were developed
to program PLCs. As of 1993, the IEC 61131-3 standard
developed by the International Electrotechnical Commis-
sion (IEC) defined five programming languages, including
two textual programming languages—ST and IL—as well
as three graphical languages—LD, FBD, and SFC. A simple
example in Fig. 2| [43] shows a ST code example which can
be used for linear scaling of an analog sensor signal.

ST is a high-level PLC programming language which
is similar to Pascal [44] (widely used from 1980 to 2000),
C/C++ and Java. While it contains common constructs
from modern programming languages such as FUNCTION,
IF/ELSIF/ELSE and CASE branches, WHILE and FOR loops, it
has its own characteristics, such as the lack of recursion, cap-
italized keywords, REPEAT statement, and FUNCTION_BLOCK
structure. For instance, FUNCTION_BLOCK as an important
part of ST, and has its own state. Its main purpose is to mod-
ularize and structure a straightforwardly defined portion of
the program. It is similar to the class-object manifestation in
object-oriented programming. Function blocks exist in two
forms: as a type or as an instance, but only the instance
can be called. For each function block, the local variables
retain their values between each ‘call’. TABLE [1| shows the
common elements of ST.

1 FUNCTION_BLOCK Scale
2 VAR_INPUT

3 Valueln : REAL;

4 ScaleInMin : REAL;

5 ScaleInMMax : REAL;

6 ScaleOutMin : REAL;

7 ScaleOutMMax : REAL;
8 END_VAR

9 VAR
10 a:REAL;

1 b : REAL;
12 Error : BOOL := FALSE;

13 END_VAR
14 IF ScaleOutMin >= ScaleOutMax THEN

15 Error := TRUE; END_IF;

16 IF ScaleInMin >= ScalelnMax THEN

17 Error := TRUE; END_IF;

18 IF Valueln < ScaleInMin OR Valueln > ScalelnMax THEN
19 Error := TRUE; END_IF;

20 IF Error = FALSE THEN

21 a := (ScaleOutMax - ScaleOutMin) / (ScaleInMax - ScaleInMin);
22 b := ScaleOutMax - (a * ScalelnMax);

23 Scale := a * Valueln + b;

24 ELSE

25 Scale := 0;

26 END_IF;

27 END_FUNCTION_BLOCK

Fig. 2: An ST programming example

ST, as the only textual programming language supported
by the new IEC standard, has a number of advantages
compared to other PLC languages. First, being textual, ST
programs can be copied relatively easily. Second, compared
with the other four languages, it is more convenient for
mathematical calculations, formulas and algorithms, and for
managing large amounts of data [9]. Third, compared with
20 years ago, PLC solutions are more in demand today and
ST can better adapt to this change. Finally, LD, SFC and FBD
also require parts of the program to be written in ST anyway
[45], [46].

Unfortunately, the absence of documents defining or
describing the complete features of the ST language and the
differing customizations of vendors can lead to inconsistent
implementations of ST. In addition, understanding the se-
mantics of the ST language, and ensuring that it is formally
defined is difficult for end users accustomed to graphical
programming. A formal executable semantics of ST not only
provides a standard, but also helps PLC engineers verify the
completeness and correctness of these implementations.

2.2 The K Framework

K is a formal logic framework based on rewriting logic [47].
It was developed with the overarching goal of pursuing
the ideal language framework, where all programming lan-
guages have formal semantic definitions and all language
tools are automatically derived in a correct-by-construction
manner at no additional cost. The K backends, such as the

TABLE 1: Common elements of the ST language

Type Element Type Element Type Element
FUNCTION_BLOCK INT . ARRAY
Built-in Data Type
Program Organization Unit FUNCTION DINT
PROGRAM SINT VAR_GLOBAL
IF LINT VAR
CASE UINT VAR_INPUT
WHILE UDINT VAR_OUTPUT
Main Statement FOR USINT VAR_IN_OUT
REPEAT Built-in Data Type ULINT . VAR_EXTERNAL
Declaration Type -
EXIT REAL VAR_TEMP
RETURN LREAL AT
BOOL RETAIN
ENUM STRING PERSISTENT
User Data Type
STRUCT WSTRING CONSTANT
. TIME TIME_OF_DAY
Built-in Data Type
DATE DATE_AND_TIME
Isabglle the.o'ry generator, 'the model checker, e.and the de- + syntax FunctionBlock := FBBody
ductive verifier, can be utilized to prove properties based on 2 syntax FBBady := VariableDeclarations Statements
the semantics and generated verification tools [48]]. Several 5 syntax VariableType s~ |
executable semantics in K have been developed for main- 14 syntax VariableDeclaration = VarBodys
stream programming languages, including C [49], Java [50], 5 | VAR VarBodys
JavaScript [51], Rust [52], Solidity [53], and IMP [54]. & syntax VarBody x=1d °" VariableType
A language semantics definition in K consists of three ’ |1 VariableType " Statement
. . 8 syntax Statement ::= Float | Bool
parts: the language syntax, the configuration, and a set of
. . L] | Statement Statement
semantics constructed based on the syntax and the config-
i A X L. K 10 | Statement */ " Statement
uration. Given the semantics definition for a programming “ - Statement “-* Statement
language and some source programs, K executes these pro- 12 | Statement - Statement
grams like a translator. For illustration, in the following we 13 > Statement “~~" Statement
take a strict subset of the ST language, i.e., STgemo shown 14 | Statement “<~ Statement
in Fig.[2|as an example to illustrate how to define language . | Statement > Statement
semantics in K. 16 | Statement "~ Statement
Configuration. The whole configuration cell 7" of STgemmo ” > [Statement Statements
. . 18 | Statement Statements Statements
contains two cells, namely %k and state. The cell k is used o - Statement - Statement
to store the source program $PGM for execution, and the 20 syntax VariableDeclarations ::= List {VariableDeclaration, "'}
cell state is used to record the mapping from a variable 21 syntax Statements = List (Statement, '}
identifier to its value. The COnfiguratiOn simulates the mem- 22 syntax VarBodys = List {VarBody, "'}

ory status and environmental changes during runs of the
program.

<<$PGM : Pgm>k <'Ma’p>state>T

With the configuration defined, we present the syntax of
ST gemo in Fig. |3} which includes some numerical operations,
logic operations and commonly used statements. Based on
the configuration and the syntax of STgemo, We introduce
some basic rules in the semantics. The role of the semantics
is to tell K how to execute the source code, where K
executes the code and updates the configuration sentence-
by-sentence after parsing the source program.

Here, we show the semantics of Allocate, Lookup and
Assignment in Fig. [as they are the most commonly

used constructs in programming languages. TABLE]|

describes some common semantic notations. Take Allocate
as an example: when K runs to lines 9-13 in Fig. [2} the
content in the k cell is (VAR a : REAL; VBs END_VAR ---),,

Fig. 3: The syntax of ST gemo

where V Bs stands for b : REAL; Error : BOOL := FALSE,;.
Then, K will rewrite (VAR a : REAL; V Bs END_VAR ---), to
(VAR V Bs END_VAR ---),, which means that a : REAL; has
been executed according to rule Variable_Allocate.
Meanwhile, it adds the mapping between the
variable name and the corresponding value
(@ — 0.0) in the current state cell Rho. In addition,
“requires notBool (X in keys(Rho))” guarantees that
the variable will not be re-declared. Similarly, variables
b and Error will be allocated separately. After that, the
content in the k cell is (VAR .VarBodys END_VAR ---),,
where .VarBodys represents an empty variable declaration
list, that is, no additional variable needs to be allocated. The
rule Variable_Finish_Allocate will be called to convert

rule Variable_Allocate

(VAR X : REAL: VBs : VarBodys END_VAR)
k

VAR VBs END VAR

Rho : Map
Rho (X +— 0.0) [, 01e
requires notBool (X in keys (Rho))

rule Variable_Finish_Allocate

(VAR .VarBodys END_VAR)

k

rule Variable_Lookup
(X :Id

T) (oo X— 1 . Dgrare
k

rule Variable_Assignment
<X:=I:Floa!; > < Xr— _ >
. k X1 state

Fig. 4: The partial semantics of ST gepo

TABLE 2: Summary of semantic notations

Notation Description
rule The beginning of a semantic rule.
b The symbol = means “rewritten by”, thus a = b
a =

denotes that a can be replaced by b.

a requires b | Execute a when b is true.

() stands for the k cell in a configuration.

(5

Similar to a = b, 7 means a will be rewritten by b.

However, it can only be used inside ().

- represents the content in the a context.

. stands for empty.

Any value.

The type of variable a is b.

a+b,a <+ b | Mapping from a to b.

a b The execution of a, followed by execution of b.

“VAR .VarBodys END_VAR” in k to “.”, which means
that there is no more code to execute in the VAR block and
K will continue to execute the subsequent code.

3 FORMAL SEMANTICS OF STRUCTURED TEXT IN
THE K FRAMEWORK

In this section, we introduce K-ST, the executable opera-
tional semantics of ST formalized in K. Note that in practice
the PLC programming environment is provided by specific
PLC manufacturers including CODESYS and Siemens’s TIA
portal (TIA, Structured Control Language (SCL)). As a con-
sequence, the implementations of different manufacturers
can vary and may also include their own unique functions
or structures.

Our approach is therefore to focus on the common fea-
tures, allowing other unique functions of the environment

5

to be implemented by extending the operational seman-
tics. Specifically, the syntax of ST is constructed based on
the official IEC 61131-3 standard [46]. The configuration is
specifically designed for ST. Based on the syntax and the
configuration, we then formalize the semantic rules for the
language features with rewriting logic. Next, we present
each component of the semantic one by one.

3.1 The Syntax of ST

TABLE j3| presents the syntax of ST defined in K-ST, which
covers most of the core syntax. We remark that TABLE
only contains the main part of K-ST while omitting oth-
ers, e.g., some built-in functions (LEN, DELETE and so on)
for space reasons. The syntax is specified by a grammar
in a dialect of Extended Backus-Naur Form (EBNF) [55],
where * means zero or more repetitions. In ST, the top-level
grammatical structures include user-defined types (TYPE
statements) and three Program Organization Units (POUs):
FUNCTION, FUNCTION_BLOCK and PROGRAM. Other syntactical
elements are derived within these top-level grammatical
structures.

3.2 The Configuration of ST

The execution of an ST program needs to update the follow-
ing kinds of state: data segment, code segment and stack.
Among them, the data segment is used to store global vari-
ables, the code segment is used to store program execution
code, and the stack is used to store local variables of the
program. Note that runtime environment switching caused
by function calls is also achieved by the operation of stack.
The overall runtime configuration of ST in K is presented in
Fig.[5l We highlight our careful design choices as follows.

Overview. There are 11 main cells in the configuration
T,i.e., k, control, allenv, genv, gvenv, store, type, constant
input, output and nextLoc. The value of each cell is initial-
ized according to its specified type. For instance, for cells
with a mapping relationship, their values are initialized to
Map type, and for cells that store a collection, they are
initialized to List type. A “.” followed by any type means
an empty set of this type. For instance, .Map in the cell
genv represents that genv is initialized with an empty map.

Enumeration type. By default, when an enumeration
type is defined in ST, PLC compilers will automatically
associate a number (indexed from 0 and incremented by 1
each time) to each variable in the enumeration. For repeated
declarations, we use count cell to record the value of the
current enumeration.

Global variables. There are two types of global variables.
First, the POUs and customized types that users define.
These variables can be accessed anywhere in the program.
We store these variables in the genv cell as the basis
for program operation. Second, the variables defined in
VAR_GLOBAL. These variables cannot be directly accessed in
the program unless they are declared with VAR_EXTERNAL.
We store these variables in the gvenv cell and provide them
on demand.

Program execution. The source code parsed by the syn-
tax SourceUnit, called $PGM, is stored in the cell k for
execution. Then the $PGM will be executed unit by unit.

‘7

If the program terminates normally, there will be a *." in

TABLE 3: The syntax of ST

Syntax Description
Id:=[a—2A—2z]la—2zA—2Z0—9]"
Ids ::= Id* Identifier

1dVal ::= Id := Ezxpression

EnumStructDeclaration ::= TY PE EnumDeclarationExp* END_TY PE

| TY PE StructDeclarationExp* END_TY PE
EnumBlock ::= Ids | IdVal*

Enum and Struct declaration

EnumDeclarationExp ::= Id : (EnumBlock) ; | Id : (EnumBlock) := Id;
StructDeclarationExp ::= Id : STRUCT VarDeclarationExp* END_STRUCT

Function := FUNCTION Id : Type VarDeclaration* Statements END_FUNCTION

Function declaration

FunctionBlock := FUNCTION_BLOCK Id VarDeclaration®™ Statements END_FUNCTION

Function block declaration

Program ::= PROGRAM Id VarDeclaration* Statements END_PROGRAM

Program declaration

Type ::= INT|DINT|SINT|LINT|\UINT|{UDINT|USINT|ULINT|BY TE|WORD|DWORD|REAL

|LREAL|STRING|STRING [Expression] |WSTRING|WSTRING [Expression| | TIME|DATE

Variable types

|TIME_OF_DAY|DATE_AND_TIME|Id|ARRAY [Expression| OF Type

VarType := VAR_GLOBAL | VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_TEMP

VarDeclarationExp ::= Ids : Type; | Ids : Type := Expression;
VarDeclaration ::= VarType VarDeclaration END_V AR

Variable declaration

Operation :=+| — | x| /| *x* | MOD| < | > | = | <= | >= | <> |AND | &

| AND_THEN | XOR | OR | OR_ELSE | ..

Ezxpression := Int | Float | String | Bool | Bit | AllTime | Id | Expression Operation Expression

Expressions

Eaxpression (Expressions) | Expression.Expression | Expression [Expressions] | (Expression)

Expressions ::= Expression™

Assignment ::= Expression := Expression;

Assignment statement

Elsel f Block ::= ELSE Statements | ELSE_IF Expression THEN Statements Elsel f Block*

If ::=IF Expression THEN Statements Elsel f Block®* END_IF,

CaseBlock ::= Expression : Statements | Expression .. Expression : Statements

Case ::= CASE Expression OF CaseBlock* END_CASE;

Branch statements

| CASE Ezxpression OF CaseBlock®* ELSE Statements END_CASE;

While .:= WHILE Expression DO Statements END_W HILFE;

For ::= FOR Expression TO Ezpression DO Statements END_FOR;
| FOR Expression TO Expression BY Expression DO Statements END_FOR,;
Repeat ::= REPEAT Statements UNTIL Expression END_REPEAT;

Loop statements

Return ::= RETURN;

Return statement

Exit = EXIT;

Exit statement

Statement ::= Expression; | Assignment | I f | Case | While | For | Repeat | Return | Exit

Statements ::= Statement™

Statements

the £ cell, denoting that no more units need to be executed.
In the preprocessing phase (the first pass of K), the £ cell
only contains the token execute. Afterwards, K will start
executing from the MAIN program.

Stack operations. The cell control contains seven
subcells—f stack, env, temp, count, gvid, print and break—
which record the operating environment of the currently
running code segment. Specifically, the function stack
fstack is a list used to store the environment before exe-
cuting other POUs, including variables in the current envi-
ronment and the subsequent program. Next, the cell env is
used to store the mapping relationship between variables

and indexes in the current environment during program ex-
ecution. Furthermore, cells temp and count are used in ENUM
and STRUCT, where temp is for temporary mapping and
count is used as a counting pointer. The cell gvid records
all identifiers of global variables to assist in the generation
of global variables. The cell print records variables which
need to be output. Finally, break stores the program after
the loop in order to support the implementation of the EXIT
statement in FOR, WHILE and REPEAT loops.

Execution environment. The allenv cell is used to cache
the execution environment before function calls (for strict

$PGM: SourceUnit ™
execute

store
Map
genv
.Map

allenv

.Map

gvenv type
.Map

nextloc

0: Int

. control

.Map
temp
.Map
print

.AllExps

Fig. 5: The runtime configuration of ST in K

type checking of parameter passing in function callsﬂ}. The
cell genv records the result of the pre-processing (including
POUs and custom types) and will be copied to env when
env is refreshed. The last cell related to the environment is
called gvenv and is used to index global variables.

Memory operation. The store cell is used to simulate
memory to record the mapping relationships of indexes
and variable values. After that, the cells input and output
are used to realize external inputs and external output
respectively. The last cell, nextLoc, ensures that the index of
a variable can always be incremented without duplication.
The design consideration behind this is that for complex lan-
guages, it is more effective to explicitly manage arbitrarily
large memory than use garbage collection [56].

3.3 Semantics of the Core Features

We implement the executable semantics covering most core
features of ST and leave the vendor-specific functionalities
as potential extensions. For example, some compilers would
use additional keywords to distinguish the declaration part
and the execution part of the program. In the following,
we provide an overview of four core semantic features of
ST, including 1) data types, 2) main control statements, 3)
declarations and calls of POUs and 4) memory operations.
Before diving into the details, we present the notations as
follows.

3.3.1 Extended Data Types

The K framework supports diverse data types including
identifiers (Id), integers (Int), bools (Bool), floats (F'loat)
and strings (String), which cover most of the require-
ments. However, there are still some unsupported data

1. This is optional but recommended for ST compilers.

types needing additional implementation in K-ST, which we
call extended data types. These extended data types can be
categorized into two kinds: 1) elementary types (TIME, BYTE,
WORD, DWORD, TIME_OF_DAY, DATE and DATE_AND_TIME) and
2) compound types (ENUM and STRUCT). We implement these
extended data types by the composition of built-in types and
methods in K as follows.

We take TIME OF DAY as an example to introduce
elementary types. There are two types of TIME_OF_DAY
in ST, e.g., TIME_OF_DAY#23: 45 : 56.30 and
TOD#23 : 45 : 56.30. Fig. [f| shows our implementation
of TIME_OF_DAY type together with its relevant operations.
Lines 1 and 2 respectively define the syntax of TIME_OF_DAY
and how to parse it (Get_TIME OF _DAY). Line 3 is used
to convert Get_TIME OF DAY to TIME_OF_ DAY, which is
achieved by two steps—Gtd2T'd and Standardization—
where Gtd2T'd realizes the conversion of the format and
Standardization realizes content conversion, e.g., replacing
60 minutes with 1 hour. Lines 4-11 define some arithmetic
and relational operations of TIME_OF_DAY.

For compound types, we take STRUCT as an example
and show its semantics in Fig. [/} including both STRUCT
declaration and instantiation. Declarations are shown in
rule Struct_Declaration, where we allocate memory for
each defined data structure. The instantiation of STRUCT
consists of four main steps in rule Struct_Instantiation:
1) CreatStruct allocates memory for I1, 2) StructInits
generates each variable in turn according to V'ds in STRUCT,
3) Set assigns values to the corresponding variables ac-
cording to Idvs, and finally, 4) Update stores the mapping
relationship of variables related to /1 into the memory of /1
to facilitate subsequent use.

Int "' Int

-

syntax TIME_OF_DAY := Int "" Int
syntax Get_TIME_OF_DAY :=r

~

[token]
rule GTD:Get_TIME_OF_DAY => Standardization(Gtd2Td(GTD))
rule Td:TIME_OF_DAY + T:Time => Td +Tdt T
rule Td1:TIME_OF_DAY - Td2:TIME_OF_DAY => Td1 -Tdtd Td2
rule Td1:TIME_OF_DAY > Td2:TIME_OF_DAY => Td1 >Tdtd Td2
rule Td1:TIME_OF_DAY < Td2:TIME_OF_DAY => Td1 <Tdtd Td2
rule Td1:TIME_OF DAY = Td2:TIME_OF DAY => Td1 =Tdtd Td2
rule Td1:TIME_OF DAY <> Td2:TIME_OF DAY => Td1 <>Tdtd Td2
10 rule Td1:TIME_OF_DAY >= Td2:TIME_OF_DAY => Td1 >=Tdtd Td2
rule Td1:TIME_OF_DAY <= Td2:TIME_OF_DAY => Td1 <=Tdtd Td2

[anywhere]

% N o W oA W

=
=y

Fig. 6: Implementation of TIME_0F_DAY in K

rule Struct_Declaration
TYPE I : Id:STRUCT Vds : VarDeclaration—
Exps END_STRUCT END_TYPE >
k
Map

Enuv
Map Map
<. N L « struct o >!'y;ﬂc < B B >¢-(msm.‘nf.

L + false .
L
L + Int1 next Loc

rule Struct_Instantiation
<VAR I1:1d:12:Id:=(I:IdValues) END_VAR >

CreatStruct (I1) ~ Structinits (Vds, I1) ~
Set (11, I) ~ Update (11)

(-~ 12— L --)
(--- L — Vds: VarDeclarationExps - -

k
env

)sl ore

Fig. 7: The partial semantics of STRUCT in K

3.3.2 Main Control Statements

Control statements are important in ST for achieving com-
plex program logic (as in most other programming lan-
guages). We show the rules for CASE, REPEAT and EXIT in
Fig.[8|(as the semantics of IF, WHILE and FOR are typical). A
CASE statement can be rewritten as a combination of an IF
and CASE through rule Case. The rule Repeat is imple-
mented as follows. We first store the subsequent statements
outside the loop (recorded as K) in cell break to deal with
the EXIT statement that may appear, and then rewrite it
into the form of WHILE for further execution. During the
execution of the loop body, once EXIT is executed, all the
statements in the current cell £ are discarded and rewritten
to K (storing the subsequent statements), as shown in
rule Exit.

3.3.3 The Declaration and Call of POUs

In ST programs, statements are inside Program Organi-
zation Units (POUs), i.e., FUNCTION, FUNCTION_BLOCK or
PROGRAM. A FUNCTION is a stateless POU type, comparing
to a FUNCTION_BLOCK which stores its own state after ex-
ecution. The design of the FUNCTION_BLOCK is similar to

rule Case
CASE E1 : Expression OF E2 : Expression,
Es: Expressions : S : Statements
CB : CaseBlock END_CASE; >

[F £1 = E2 THEN S ELSE
: § CB END_CASE; END IF;

CASE E1 OF Es
rule Repeat
REPEAT S : Statements UNTIL
£ Expression END_REPEAT; ~ K
S ~ WHILE (NOT E) DO S END_WHILE,; .

>b'r'(:uk
rule Exit
EXIT; ~ _ ListItem (K)
K K List break

Fig. 8: The partial semantics of ST control statements

List
ListItem (K)

the concept of class-object manifestation in object-oriented
programming (OOP), which aims to achieve better modu-
larization. FUNCTION_BLOCKs exist in two forms: as a type
or as an instance, and only the instance can be called.
For a FUNCTION_BLOCK instance, the local variables retain
their values between each ‘call’. PROGRAMs are defined by
the IEC 61131-3 standard as a “logical assembly of all the
programming language elements and constructs necessary
for the intended signal processing required for the control
of a machine or process by a PLC-system” [46]. Due to
space constraints, we show the declaration, call and return
operation of FUNCTION_BLOCKs in Fig.[9] as an example for
illustration (FUNCTION and PROGRAM are shown in Fig.
and explained only when necessary).

Declaration. The declaration of FUNCTION_BLOCK
is similar to that of STRUCT. As shown in
rule Function_Block_Declaration, we first assign an
index in memory for FUNCTION_BLOCK X, set the type to the
built-in FunctionBlock, and convert the entire declaration
statement to the built-in type funblambda(X, void, Vds, S)
for storage, where void means no return value, Vds and S
are variable declarations and operations in X respectively.
The purpose of setting const to true is to prevent it from
being modified. Note that FUNCTION and PROGRAM set type
and store to Function, funblambda(X,T,Vds,S) and
Program, plambda(X,void, Vds, S, . Map).

Instantiation. The instantiation of FUNCTION_BLOCK
is achieved through variable declarations, as shown
in rule Function_Block_Instantiation. However, the
value is set to runfunblambda(X,void,Vds,S,.Map) to
distinguish it from funblambda and .Map is designed
to store the FUNCTION_BLOCK environment for next call
and external query. This is because a FUNCTION_BLOCK
can only be called after instantiation, i.e., run funblambda
can be executed but funblambda can not. Since FUNCTION
and PROGRAM have no such restrictions, funlambda and
plambda can be directly called and executed.

Call. There are two cases when a FUNCTION_BLOCK

rule Function_Block_Declaration

FUNCTION_BLOCK X : Id Vds : VarDeclar—
ations S : Statements END_FUNCTION_BLOCK >
k

Env
Env [X — L] env type

Map
L — funblambda (X

Map
L — true

requires notBool X in_keys (Env)

Map
L — FunctionBlock

wvoid, Vds,§) >slo‘r(f

nextLoc

> (L = L +1Int1)
constant

rule Function_Block_Instantiation
<VAR X1 : funblambda (X2, void, Vds, S) END_VAR >

Env
Env [Xl — L] enw type

Map
L — runfunblambda (X1, void, Vds, S, . Map) store

Map
e L= L +Intl) .,
< L = true >fmnlarz!(* >7“’Lth'

requires notBool X in_keys (Enuv)

k
Map
L — X2

rule Function_Block_Call_First
run funblambda(X, T, Vds : VarDeclarations,
S Statements, .Map) (E : Expressions) —~ K
renew ~ runpfblambda (X, T,Vds, S, .Map) (E)
~ Update (X) ~ RETURN null;

k

Env
S C
Genv/env

control

.List
ListItem(in fo(X,T K Allenv.C)) Jstack

Allenv
(Gen?’.)gcnv < E a1
U f alleny

rule Function_Block_Call_Others
run funblambda(X : Id, T : Type, Vds, S, M)
(E : Exzpressions) ~ K
renew ~ runpfblambda (X,T,Vds, S,M)(E)
~ Update (X) ~ RETURN null;

k

Env

M Jenv c >
control

> (Genv),,,,, requires M # K .Map
allenv o

=),

LK, M, (.7))>
fstack
(_ = O) control

List
ListItem(in fo(X,T,K,Allenv,C)) Fstack
Allent

< Tt
(T

rule Return
RETURN V :
V ~n K

L:sUﬁ(minfo(_.
Lnf

Value;

H!fnu env

Ailem
M allenv

Fig. 9: The partial semantics of FUNCTION_BLOCK

is called. The first case is that the FUNCTION_BLOCK
is called for the first time, as shown in
rule Function_Block_Call_First. Since there is no
initial environment (the last value of runfunblambda is
.M ap), we will first store the current execution environment
info in fstack, including subsequent statements K, the
Allenv of the current environment, and the parameters
C in cell control. Then, we reset parameters C' through

9

renew. After that, K executes the variable declaration Vds
(including index application, initialization and assignment)
and statements .S in the function block. In addition, Update
is used to update the .Map in runfunblambda to record
the current environment. Finally, RETURN can return to
the calling program and configure the corresponding
environment. In other cases (not called for the first time),
as shown in rule Function_Block_Call_Others, there is
already a mapping relationship between related variables
and values in cell store, and the mapping relationship
between identifiers and indexes is also stored in the
runfunblambda. Therefore, no new memory allocation
will be made during the execution process and the existing
environment will be used. Note that the value of the
variable in the FUNCTION_BLOCK will not be initialized,
which means that the execution result for the same input
may be different.

Regardless of whether RETURN appears in the
FUNCTION_BLOCK, we add a RETURN by default for each
FUNCTION_BLOCK as a sign that the FUNCTION_BLOCK has
finished running and returned to the calling POUs. Since
FUNCTION_BLOCKs and PROGRAMs do not have a return value,
we set null as the return value. Note that a FUNCTION
has a return value, and the returned value is the value
corresponding to the function identifier, so we need to use
Clearenv to clean up the memory environment correspond-
ing to the function identifier after calling procedure renew
and add the declaration of the function identifier variable in
Vids.

3.3.4 Memory Operations

Here, we present the rules for memory operations on ele-
mentary types in ST, such as built-in types and extended
elementary types. What elementary types have in common
is that they take only one memory slot. For complex types,
such as enums, structs, arrays, etc, which are compositions
of elementary types, the memory operation can be regarded
as a set of memory operations on elementary types. For
instance, the assignment to struct can be equivalent to assign
value for each variable of this struct.

Similar to STgemo, main memory operations in ST are
still composed of Allocation, Lookup, Assignment and
additional Clearenv. Where Allocation implements the
allocation of memory for variables in the store, Lookup
is used to find variable values in store cell, Assignment
implements the assignment of variables, and Clearenv im-
plements the recovery of memory in the store. However,
because the complete ST semantics has a more complex type
design, they will involve more cells in configurations, and
are more complicated, as shown in Fig.

Note that HOLE is just a variable, but it has special
meaning in the context of sentences with the ‘heat” or ‘cool’
attribute. In short, ‘heat” is to lookup the corresponding
content of the HOLE in the formula, and ‘cool’ is to put
the recheck results back into the formula. For example, in
expression a-+b where a is represented as HOLF, 'heat’ is to
take a out of the formula and find its corresponding value.
If it is 3, and ‘cool” puts 3 back into the original formula,
then the formula becomes 3 + b.

Let us start with the Assignment operation (we omit
Lookup as it is straightforward). The Assignment of ST

rule Function_Declaration

FUNCTION X : Id : T : Type Vds : VarDeclar—
ationsS : Statements END_FUNCTION >
k
L — Function

Env
Env [X « L]/, type
>.5'lu'rc'

< Map
> (L = L +1Int1)
constant

Map

L~ Sfunlambda (X, T, Vds, S) N

Map
L — true

requires notBool X in_keys (Env)

nextLoc

rule Function_Call
funlambda(X : Id, T : Type, Vds : VarDeclarations,
S : Statements) (E : BExpressions) ~ K
renew ~ ClearEnv (X) ~ runpfblambda
(X.T.VAR X : T; END_VAR Vds, S, . Map) (E)
~ RETURN X;

k

)
control

List < Enwv >
Listitem(in fo(X,T,K, Allenv,C)) fstack Genv/enuv

Allenv
< <GF3‘I?.'!,‘> genv
allenv

Env
rule Program_Declaration

PROGRAM X : Id Vds : VarDeclarations
S : Statements END_PROGRAM >

Env
Env [X « L]/ ..

Mao
L v plambda (X, void, Vds, S, Map)

Map
L — true

requires notBool X in_keys (Env)

k

>ﬁ,y'pc
>S!U‘('(.’

> (L = L +1Int1)
constant

Map
L — Program

nexiLoc

rule Program_Call
< plambda(X, T, Vds, S, M) (E) ~ K >
&

renew ~ runpfblambda (X, T,Vds, S, M) (E)

~ Update (X) x
List < Enwv >

Listitem(in fo(X, T,K, Allenv,C)) fstack Genv/ienv trol

suac contro

Allenv
g allenv

Fig. 10: The partial semantics of FUNCTION and PROGRAM

divides the Assignment of STgemo into two steps, where
context and rule Find_Index are used to determine
the index L of the assigned variable X in store, and
rule Assignment implements the update of the store
at index L. The purpose of this division is to make the
Assignment operation better applicable to complex types,
because in some cases the index of the assigned variable can
not be directly obtained and multiple queries are required.
For instance, when assigning a value to A [3,5,7], where
A is a multi-dimensional array, we need to look up each
dimension one by one to finally determine the index. In
addition, we refer to the state of X in type and constant
during the assignment process. On the one hand, we use
Limit to ensure that the assigned value meets the type

10

rule Lookup
<X ",Id >k X Lo
(-++ L > V : Value -)gore
context (HOLE = lvalue (HOLE)) := _
rule Find_Index
(lvalue (X : Id = loc (L)) -+)
rule Assignment
<loc(L : Int) == V : Value)
4 k
¢ L (C=2Y) - store
(-++ L — T : EleType
rule Allocation
<VARX :Id : T : EleType; END_VAR >

(- X > L:Int Yoy

(--+ L v false --
requires Limit(V, T)

: >constant

.)type

k

Env
<Env X — L]>m (Goen2)guens

.Map -Map
L +— Undefined (T) store LeT type
Map
ee ————= ... L = L +Int1
< L — false >constant < "t Dnestloc

requires notBool (X in_keys (Env) orBool X in_keys (Guvenv))
rule Clearenv
<Clearenv (X : Id) > Env

k <Env [X « undef] >e,w

Fig. 11: The partial semantics of memory operations

requirements, and on the other hand, we use constant to
ensure that the constant cannot be modified. Although the
memory cleaning operation is not necessary for ST in K, a
simple Clearenv operation can effectively reduce repetitive
code and improve code readability. For rule Clearenv,
what needs attention is the operation on cell enwv: it replaces
the index L of variable X with undef which means null in
the map supported by K.

ST has relatively complex and strict type definitions,
therefore the rule Allocation of ST involves more cells and
operations, such as type and constant for storing variable
types and whether they are constants, where Unde fined
is used to generate the default of the specified type. In
addition, according to the content in TABLE [I} not only
VAR will be used in the variable declaration process, but
also other keywords, such as VAR_INPUT, VAR_IN_OUT, etc.
In order to reduce the complexity of the code, we also
implement these declarations through VAR declarations. For
instance, Fig. [12| shows the implementation of VAR_GLOBAL
and CONSTANT. We realize regional changes (from the env
cell to the gvenv cell) through letogv, and SetConstant
realizes the modification of the value in the const cell.

We remark that K-ST covers 259 core features with 876
rules in total, using 2315 lines of K code. The complete code
can be accessed through https:/ /github.com/wkyml/K-ST.

https://github.com/wkyml/K-ST

rule Global_Declaration
<VAR_GLOBALX :Id : T: EleType; END_VAR >

VAR X : T; END_VAR ~ letogv (X) ~
Clear Env (X) i
rule Constant_Declaration
<VAR CONSTANT X : Id : T : EleType; END_VAR >
k

VAR X : T; END_VAR ~ SetConstant (X)

Fig. 12: The partial semantics of variable declarations

4 TESTING AND ANALYSING ST COMPILERS

In addition to providing formal references for defined lan-
guages, our formal semantics also has several applications
that use language-independent tools provided by K, such as
state space exploration, model checking, symbol execution
and deductive program validation. We omit demonstration
of these applications in this paper since they have been
well-illustrated in related works [51]], [52]. In this work,
we introduce the testing of ST implementations/compilers
based on our executable semantics, K-ST.

As discussed earlier, because ST compilers are typically
provided by vendors, the execution behavior of compilers
may be different, and may even be inconsistent with respect
to the high-level semantics [37]. One of the main applica-
tions of the proposed semantics is to define the ‘reference’
execution behavior of ST, which can help programmers
detect bugs in existing ST compilers.

To explore this application (and given the closed nature
of commercial compilers), we choose OpenPLCE] as our test
object, which is open source and supports ST programming.
The overall workflow of our testing approach is depicted in
Fig.[13] It includes three parts: program variation, program
execution and result comparison. First, seed programs are
mutated to improve the diversity of test samples. Next,
we use the mutated program as input to run OpenPLC
and our executable semantics respectively. Finally, the re-
sult comparison part compares the consistency of the two
execution results. It should be noted that we use a policy
similar to [33], that is, the program does not need input,
and the category of result consistency comparison includes
the values of all variables in the program. The comparison
of results is performed to analyze potential inconsistencies
between K-ST and OpenPLC. By comparing the final ex-
ecution state of the program with its variable state, we
can identify potential inconsistencies. The execution state
focuses on determining whether the program has completed
its execution or terminates at the same statement. On the
other hand, the variable state captures the values of all
variables in the program, including input, output, and inter-
mediate variables, after the program has finished running.
TABLE 4 shows our measure of consistency, where () and
Q' represent the values of each variable after the program
executes, I and I’ represent the commands corresponding
to the exception termination, and ¢ and Xrepresent consis-
tency and inconsistency respectively. As a result, unless K-
ST and OpenPLC exhibit identical execution and memory
states, their behavior will be deemed inconsistent.

2. https:/ /www.openplcproject.com/

11
TABLE 4: Measure of K-ST/OpenPLC consistency

The result of K-ST

Successful Unusual
execution(Q) termination(/)
Successful Q=qQ' v X
The result execution(Q") Q#AQ X
of OpenPLC Unusual I=1'&Q=Q'Vv
termination(I”) others X

TABLE 5: Mutation operations

Mutation Operation Example

a:INT;~ a:INT := 3527,

Variable Random Assignment
Scalar Variable Replacement a:=b;~ a:=c|30;
Arithmetic Operator Replacement a+b~a—0b
Arithmetic Operator Insertion at+b~a+b-c
Arithmetic Operator Deletion a+b—c~a+b
a>b~a<=0b
a AND b~ aORD
a ANDb~a ANDbORc
a ANDbORc~aANDD
NOT a~al|a~ NOT a
~IF---END_IF;

EXIT;~

Relational Operator Replacement
Logical Connector Replacement
Logical Connector Insertion
Logical Connector Deletion
“NOT” Mutation

Statement Insertion

Statement Deletion

In order to better mutate seed programs to improve
the diversity of test samples, we propose specific mutation
operations in TABLE [5[to generate mutated test samples.
These mutation operations can enrich the test samples while
minimizing program errors. Our method for generating
mutant ST programs is shown in Algorithm 1. Given an ST
program S;, the algorithm makes a copy, randomly assigns
initial values to all variables at the time of declaration, and
applies some applicable mutation operators to randomly
selected lines in the program. The test is done by comparing
results of these samples in K-ST and OpenPLC. It should
be noted that correct and erroneous programs in the test
sample are both meaningful for checking the consistency
of execution behavior. This is because K-ST and OpenPLC
report program errors at the same time, allowing us to verify
a stronger notion of consistency. In addition, considering
the lag of OpenPLC updates, we also tested it on the latest
Beremizﬂ which uses the same underlying implementation
(MATIEC EI) as OpenPLC. The specific results of the test are
shown in Section[l

5 EVALUATION

In order to evaluate the semantics of ST we defined in K,
we deployed K-ST on K version 5.1.11 (Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz). In the following, we design
multiple experiments to systematically answer the following
research questions (RQs).

3. https:/ /beremiz.org/
4. https:/ /github.com/thiagoralves/OpenPLC_Editor/tree/
master/matiec

https://www.openplcproject.com/
https://beremiz.org/
https://github.com/thiagoralves/OpenPLC_Editor/tree/master/matiec
https://github.com/thiagoralves/OpenPLC_Editor/tree/master/matiec

Seed Programs

|

Source Code
Mutation

Execution

12

D[[==

Semantic Model

Execution
Results

Result
Comparison

Execution
Results

Pass/Fail
Verdict

Fig. 13: Overview of the test process

Algorithm 1: Generating mutated ST programs

Input: A set of ST programs S
Output: A set of mutation ST programs Sy
1 Let Op,,, be the Variable Random Assignment;
2 Let Ops be the other mutation operations;
3 Let Sy = 0;
a4 for S; € Sdo

5 Make a copy S: of the ST program S;

6 mutated := false;

7 Apply Opyyq to all variable declarations;

8 while mutated do

9 Randomly choose a set of lines number [
from S_:;

10 fori € I do

1 if randomly choose operator Op € Ops is

applicable to line i then
12 L Apply Op to line 4;
13

mutated := true;
L)
14 Sy =Sy U 5;';

15 return Sus;

e RQI1: How much of the ST language is K-ST cover-
ing? Completeness of the semantics is an important
indicator to measure executable formal semantics.
The lack of key semantics will seriously affect the
usefulness of formal semantics.

e RQ2: Is K-ST correct? Semantic correctness is the
basis for ensuring the usability of executable formal
semantics, so we need to analyze the correctness of
formal semantics implemented.

e RQ3: Can K-ST be used to discover bugs in a com-
piler? This is important since a key application of
executable formal semantics is to identify compiler
bugs.

5.1 Test Sets

For the purpose of evaluating the coverage and the correct-
ness of K-ST, the test data set that we used comes from
GitHub. We searched 4853 programs in GitHub through
keywords in the ST language. Then, we automatically
screened out samples containing other programming lan-
guages (2516) and XML forms (1542). After that, we manu-
ally splice the remaining programs and remove samples that
lack the components required for operation (such as POUs).
After screening, 567 complete programs written in pure
ST formed our test set. In other words, these 567 samples
contain all the components required for operation and do
not use other languages, such as C and Python.

With the aim of comprehensively testing the correct-
ness of the execution behavior of OpenPLC, we use two
sample sets, including test samples collected from GitHub
(GitHub set) and test samples obtained through mutation
(Mutated set). The GitHub set is the sample set with 567
test samples mentioned before. The Mutated set is generated
by Algorithm 1. We selected 30 high-quality samples from
GitHub set as initial mutant seeds. These 30 samples contain
all the key features of ST. Then, three rounds of iterative
mutation are carried out through Algorithm 1. Each round
of iteration produces 10 mutation samples per seed. Except
for the initial seed used in the first round, the seeds of each
round of mutation are the result of the previous round of
mutation. We get a set containing 33,330 mutation samples.

5.2 Experiment Results and Analyses
5.2.1 Semantic Completeness (RQ1)

We executed K-ST on 567 test samples collected from
GitHub. Among these 567 test samples, K-ST supports the
execution of 509 of them. For these 509 tests which K-ST can
support, Fig. [14]lists the number of tests for some important
features (based on TABLE [1) used in the evaluation. Specif-
ically, there are six kinds of features, namely FUNCTION,
FUNCTION_BLOCK, PROGRAM, Declaration types, Date types

RETURN
EXIT
REPEAT +——1
FOR
WHILE
CASE

IF

=1
W6

9
13
-7

13

369

STRING...
TIME...
ARRAY

3
g

311

STRUCT
ENUM
BOOL

m5
.10

412

15
I 34

BYTE...
REAL...
UINT...

322

INT...
VAR_TEMP 12
VAR_EXTERNAL 14
VAR_IN_OUT
VAR_OUTPUT
VAR_INPUT
VAR
VAR_GLOBAL 24
CONSTANT =4
PROGRAM
FUNCTION_BLOCK

145

313
360
386
470

509

FUNCTION

338

300 400 500 600

Number of tests

Fig. 14: Number of tests for each feature in ST

and Statements. For Declaration types, we list the num-
ber of tests for CONSTANT, VAR_GLOBAL, VAR, VAR_INPUT,
VAR_OUTPUT, VAR_IN _OUT, VAR_TEMP and VAR_EXTERNAL.
For Data types, we list the number of tests for elemen-
tary types signed integer (INT, DINT, SINT, LINT), un-
signed integer (UINT, UDINT, USINT, ULINT), float (REAL,
LREAL), Boolean (BOOL), byte (BYTE, WORD, DWORD), string
(STRING, WSTRING), and time (TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME); compound types enum (ENUM) and struct
(STRUCT); and finally, the array type ARRAY. For Statements,
we list the number of tests for main control statements: IF,
CASE, FOR, WHILE, REPEAT, EXIT and RETURN.

As indicated in Fig. compared with FUNCTION,
the FUNCTION_BLOCK is more favored by ST program-
mers (PROGRAM is necessary for ST program operation).
For Declaration types, the most used is VAR (with
a ratio of 470/509), followed by VAR_INPUT (386/509),
VAR_OUTPUT (360/509) and VAR_IN_OUT (313/509). Among
all the Data types, BOOL is the most used, followed by
unsigned integer and ARRAY, constituting 322/509 and
311/509 respectively. For the Data types, BOOL is the most
common type. In addition, we must remark that we do not
count the type of array members. Finally, IF is the most
common statement in all the tests considered. This is also in
line with the main working scenarios of PLCs.

We remark that we do not consider the vendor-based
functions in this experiment as these functions vary not
only from vendor to vendor, but even from product to
product. In particular, Mitsubishi PLCs provide completely
different data types, including Bit, Word[Signed /Unsigned],
Double Word[Signed/Unsigned], Bit STRING[16-bit/32-
bit], FLOAT, STRING[32] and Time. Siemens PLCs support

keyword BEGIN to represent the end of variable declaration
and the beginning of operation instructions. In addition,
there are also obvious differences between different prod-
ucts of the same vendor. For example, the 57-1500 and
the 57-1200 from Siemens support different type conversion
methodﬂ where the former only provides explicit conver-
sions of types, and the latter provides both explicit and
implicit conversions.

5.2.2 Semantics Correctness (RQ2)

On the other hand, in order to evaluate the correctness of
K-ST, we compared the execution results of K-ST against
those of vendor compilers CODESYS, CX-Programmer and
GX Works2. We consider the proposed semantics correct
if the execution behaviors of K-ST are consistent with the
ones of the CODESYS, CX-Programmer and GX Works2
compilers. The consistency criteria described in Section [4]
are utilized to evaluate the consistency of behavior between
K-ST and the compilers provided by vendors. Specifically,
if K-ST and these compilers demonstrate identical execution
and variable states for the same program, their behavior
is deemed consistent. We list the coverage of the K-ST
semantics in TABLE [f] from the perspective of each feature
specified by the official ST documentation, where FC, C and
N mean “Fully Covered and Consistent with Compilers”,
“Covered and Consistent with Compilers” and “Not Cov-
ered”, respectively.

From TABLE |6} we can see clearly that for POUs, we
fully cover the declaration and call. In variable declarations,

5. https:/ /support.industry.siemens.com/dl/dl-media/272/
109742272 / att_918238/v6,/93516999691 / zh-CHS /index.html#
ae443583b99950f7cca0d7237fe81ad4

https://support.industry.siemens.com/dl/dl-media/272/109742272/att_918238/v6/93516999691/zh-CHS/index.html#ae443583b99950f7cca0d7237fe81ad4
https://support.industry.siemens.com/dl/dl-media/272/109742272/att_918238/v6/93516999691/zh-CHS/index.html#ae443583b99950f7cca0d7237fe81ad4
https://support.industry.siemens.com/dl/dl-media/272/109742272/att_918238/v6/93516999691/zh-CHS/index.html#ae443583b99950f7cca0d7237fe81ad4

14

TABLE 6: Coverage of the proposed ST semantics

Feature Coverage Feature Coverage Feature Coverage
POUs(core) Data types(core) Enum instantiation FC
POUs declaration SINT FC Struct
FUNCTION FC INT FC Struct declaration FC
FUNCTION_BLOCK FC DINT FC Struct instantiation FC
PROGRAM FC LINT FC Function block
POUs calls USINT FC Function block instantiation FC
FUNCTION FC UINT FC Array
FUNCTION_BLOCK FC UDINT FC One — dimensional array C
PROGRAM FC ULINT FC Multi — dimensional array C
Variable Declaration(core) REAL FC Statements(core)
CONSTANT FC LREAL FC Assignment statement
VAR_GLOBAL FC BOOL FC = FC
VAR FC BYTE FC = N
VAR_INPUT FC WORD FC Branch statement
VAR OUTPUT FC DWORD FC IF FC
VAR_IN_OUT FC STRING FC CASE FC
VAR_EXTERNAL FC WSTRING FC Loop statement
VAR TEMP FC TIME FC WHILE FC
AT C DATE FC FOR FC
RETAIN N TIME OF_DAY FC REPEAT FC
PERSISTENT N DATE_AND_TIME FC Break statement
Typed constant Enum RETURN FC
Type # Data FC Enum declaration FC EXIT FC

Built — in function

Numerical function (30)

ADD, SUB, MUL, SQR, INC, DEC, MAX, MIN, MUX, ABS, SQRT, TRUNC, FRAC, FLOOR, LN, LOG, EXP, SIN
COS, TAN,COS,TAN ASIN, ACOS, ATAN, NEG, EXPT, DIV, MOD, LIMIT

Logical function (9)

GT,LT,GE,LE, EQ, NE, AND, OR, SEL

String function (9)

CONCAT,INSERT, DELETE, REPLACE, FIND, LEN, LEFT, RIGHT, MID

Translate function (160)

L FC: Fully Covered and Consistent with Compilers (256/262)

AT is related to input and output. We remark, however, that
the storage mode of variables in K is very different from that
in real PLCs, so we just support simple computer-side input
and output. In addition, RETAIN and PERSISTENT are related
to the actual situation in the PLC, so they are not imple-
mented. For instance, AT is used to bind the actual point of
the PLC; RETAIN and PERSISTENT support the preservation
of variable values after a power failure or power loss. Array
is the only one which is covered but not fully covered in
all data types. Limited by the realization of arrays, it is
temporarily impossible to achieve the array for enum and
struct, and to assign values to multi-dimensional arrays as
a whole. In statements, = has been used in K and can be
replaced by :=. For built-in functions, we show a list which
we supported, including 30 numerical functions, 9 logical
functions, 9 string functions and 160 translate functions.

In the process of comparing with CODESYS, CX-

LJ C: Covered and Consistent with Compilers (3/262)

[LTN: Not Covered (3/262)

Programmer and GX Works2, the following points need to
be explained. Firstly, due to the closed nature of these com-
pilers, they cannot be simply called, so we have to manually
fill the code in the specified way into the compiler to compile
and run, and compare the results, which is laborious and te-
dious work. This also hinders us from testing these commer-
cial compilers in an extensively large scale. After that, differ-
ent vendors have obvious differences in the implementation
of compilers, so the source code needs to be adapted to a
certain extent. For example, only 10 basic data types—Bit,
Word[Signed /Unsigned], Double Word[Signed /Unsigned],
Bit STRING[16-bit/32-bit], FLOAT, STRING[32] and Time—
are provided in the GX Works2 compiler, so we need to
adapt the variable types of the source program.

TABLE 7: The results of K-ST and OpenPLC

Data Set GitHub Set | Mutated Set
Number of samples 567 31059 (2271)
Number of program K-ST 509 15850
run completely OpenPLC 490 11581
KOy 30 5664
Inconsistent KOy 11 1395
Diff. Result 0 735

5.2.3 Finding Bugs in OpenPLC (RQ3)

We execute OpenPLC and K-ST with the GitHub set and
Mutated set as input. The execution results of the two data
sets are shown in TABLE [/} Here, KOy is the number of
programs that K-ST can execute normally but OpenPLC
cannot compile and run; KO, is the number of programs
that K-ST cannot run normally but OpenPLC can.

For the GitHub set, K-ST supports 509 of them, and
OpenPLC supports 490. Through analysis, we found that the
reason for this phenomenon is that OpenPLC has some func-
tional deficiencies. For example, OpenPLC does not support
the initialization of variables using formulas at the time
of declaration; numerical calculations of BYTE, WORD, DWORD
types are not supported, etc.

For the Mutated set, there is a big difference between
the execution results of K-ST and OpenPLC. First of all,
we filter 2,271 timeout programs that timed out both in
OpenPLC and K-ST with 10 seconds as the time limit. After
that, we manually analyzed these samples with inconsistent
results to determine the causes. For the large K,0; value,
functional deficiencies remain the main reason.

We found an interesting bug in OpenPLC. The bug is a
“VAR” parsing exception in OpenPLC. If the first operation
instruction starts with “VAR”, such as “VARO := 1;”, Open-
PLC terminates abnormally. The interesting phenomenon is
when an error statement appears in an unexecuted part of
the program, such as after the "RETURN;”: K-ST can execute
such a program, but OpenPLC cannot. The main reason
for this phenomenon is that K adopts an operation-based
detection mechanism. Because the error code will not be
executed, it will not lead to the termination of our executable
semantics. The case study is shown in APPENDIX A.

After that, by analyzing those programs that have differ-
ent results on K-ST and OpenPLC, we find that the reasons
for the different results are mainly due to the differences in
underlying implementations between K and OpenPLC. For
example, for integer mode operation —7 MOD 3, the execu-
tion result of K-ST is —1, whereas the result for OpenPLC
is 2. From a mathematical point of view, both results are
correct, but they will have a completely different impact on
any following operations. When we run the program again
in CODESYS, the results of CODESYS were the same as K-
ST.

For those samples that K-ST cannot run normally but
OpenPLC can execute normally, our analysis found some
bugs in OpenPLC. For example, while OpenPLC can check
explicit divide-by-zero operations, it allows the execution
of implicit divide-by-zero operations. TABLE [§] details all

15

functional deficiencies and bugs we found in OpenPLC.
We show some relevant case studies in APPENDIX B.
Considering that Beremiz can be regarded as an updated
version of OpenPLC, we have retested the inconsistencies
we found in Beremiz. We found that in the latest Beremiz,
it fixes some problems, including negative MOD operation
results and “VAR” parsing exceptions. But other bugs and
shortcomings still exist. In response to these problems in
OpenPLC, we have submitted them to the OpenPLC and
Beremiz developers and are waiting for their confirmatiorﬁ

6 RELATED WORK

In this section, we discuss some other PLC program analysis
techniques, summarize their characteristics, and distinguish
them from our work.

Keliris et al. [19] propose a framework (ICSREF) which
can automate the reverse engineering process for PLC bina-
ries. They instantiate ICSREF modules for reversing binaries
compiled with CODESYS and getting the complete Control
Flow Graph (CFG), and they provide an end-to-end case
study of dynamic payload generation and attack deploy-
ment. Tychalas et al. [7] analyze the binary files generated by
all control system programming languages in CODESYS to
understand the differences and even the vulnerabilities in-
troduced during the program compilation process. Based on
this analysis, they provide a fuzzing framework (ICSFuzz)
to perform security evaluation of the PLC binaries. Our
work differs from them because we focus on the source code
and do not rely on any specific compilation environment.

Kuzmin et al. [57] propose to use linear-time tem-
poral logic (LTL) to guide program behavior and check
whether ST programs satisfy the corresponding temporal
logic through Cadence SMV. Darvas et al. [15] propose rule-
based reductions and a Cone of Influence (COI) reduction
variant for state explosion problems that may be encoun-
tered in the formal analysis of ST code, and use the NuSMV
model checker to verify temporal logic. After that, they
[58] provide a state machine and data-flow-based formal
specification method for PLC modules. In addition, they
[43] analyze the feasibility of converting between the 5 PLC
programming languages provided by Siemens, and point
out that the extended SCL (a vendor-defined ST) can be
used as the target language for conversion. Adiego et al.
[59] propose an intermediate model-based method which
can transform PLC programs written in different modeling
languages of verification tools to facilitate checking tem-
poral logic. Hailesellasie et al. [60] propose UBIS, which
converts ST programs with potential intrusions as well as
trusted versions of programs into attributed graphs through
UPPAAL, and compares their nodes and edges to detect
stealthy code injections. Bohlender et al. [61] apply formal
verification and falsification of temporal logic specifications
to analyze chemical plant automation systems. Rawlings
et al. [62] use symbolic model checking tools st2smv and
SynthSMV to verify and falsify a ST program controlling
batch reactor systems. Xiong et al. [23] use the behavior
model (BM) to specify the behavior of ST programs, and

6. https:/ /bitbucket.org/automforge /matiec_git/issues?status=
new&status=open

https://bitbucket.org/automforge/matiec_git/issues?status=new &status=open
https://bitbucket.org/automforge/matiec_git/issues?status=new &status=open

16

TABLE 8: The bugs and functional deficiencies of OpenPLC

Type Problem Description
“VAR” parsing exception The first operation instruction starts with “VAR”, and OpenPLC terminates abnormally.
Division by zero OpenPLC can check explicit division 0 but allow the execution of implicit division 0.
Bug Overflow access OpenPLC can check explicit overflow access but allow the execution of implicit overflow access.
MOD by zero OpenPLC provides MOD 0 operation, and the result is 0.
MOD Exception The divisor of MOD operation can be empty.
Numerical OpenPLC does not support normal numerical calculation .
calculation defects Numerical calculations of BYTE, WORD, DWORD types are not supported.
Array functions defects Parentheses are not allowed in array assignments.
FUNCTION_BLOCK o o)))
Functional Multiple instantiation of function blocks in one statement is not allowed.
o instantiation defects
deficiencies -
ENUM defects OpenPLC does not support normal assignment of ENUM type.
Variable Some non-keyword strings cannot be used as variable names, such as “ramp”, “LocalVar(_", etc.
declaration defects OpenPLC can not support formula and other variables previously declared as initial value.
Without operation or variable declarations, OpenPLC cannot compile ST program.
Structural defects P P P i
Without statements in FOR, WHILE, IF, CASE, REPEAT, OpenPLC cannot compile ST.

provide an method based on automatic theoretical to verify
LTL attributes on BM. Our work differs from the afore-
mentioned works because they attempt to transform PLC
programs into intermediate languages or other program-
ming languages which are suitable for verifying or detecting
potential issues, and lack analysis in the conversion process.
In addition, these methods do not offer feedback at the level
of source code.

Huang et al. [38] is the closest work to ours. They first
defined the executable semantics of the ST language in K
and use it to check some security properties. Our work
differs because we cover a more complete ST language, and
we can use it to discover errors in ST compilers.

7 CONCLUSION

In this paper, we introduced an executable operational
semantics of ST formalized in the K framework. We pre-
sented the semantics of the core features of ST, namely
data types, memory operations, its main control statements,
and function calls. Our experimental results show that the
proposed ST semantics has already covered the main core
language features and correctly implements 26,137 lines of
public ST code on GitHub. Furthermore, the application
of the proposed semantics in testing and analyzing PLC
compilers is discussed. By comparing and analyzing the
execution results of OpenPLC and K-ST, we found five
bugs and some functional deficiencies in OpenPLC. In the
future, we hope to further extend K-ST to support the pro-
gramming environments provided by different vendors. For
example, vendors may customize keywords (Bit STRING of
GX Works2), add additional structures (LABEL of Siemens),
or even widely extend ST (ExST of CODESYS).

ACKNOWLEDGMENTS

We thank the reviewers for their constructive feedback. This
research is supported by National Key R&D Program of
China under grant 2020YFB2010900, NSFC under grants

61833015 and 62293511, Provincial Key R&D Program of
Zhejiang under grants 2020C01038 and 2021C01032, and the
Starry Night Science Fund of Zhejiang University Shanghai
Institute for Advanced Study, Grant No. SN-ZJU-SIAS-001.

REFERENCES

[1] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE
Security & Privacy, vol. 9, no. 3, pp. 49-51, 2011.

[2] G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015
Ukraine blackout: Implications for false data injection attacks,”
IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3317-3318,
2016.

[3] K. Zetter, “The Ukrainian power grid was hacked again,” Mother-
board, 2017.

[4] N. Perlroth and C. Krauss, “A cyberattack in Saudi Arabia had a
deadly goal,” Experts fear another try, 2018.

[5] D. Tychalas and M. Maniatakos, “Open platform systems under
scrutiny: A cybersecurity analysis of the device tree,” in 2018 25th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS). IEEE, 2018, pp. 477-480.

[6] A.Nochvay, “Security research: CODESYS runtime, a PLC control
framework,” Kaspersky ICS CERT, 2019.

[7] D. Tychalas, H. Benkraouda, and M. Maniatakos, “ICSFuzz: Ma-
nipulating I/Os and repurposing binary code to enable instru-
mented fuzzing in ICS control applications,” in 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021.

[8] “Programmable controllers - Part 3: Programming languages,”
International Electrotechnical Commission, Standard, 2013.

[9] T. M. Antonsen, PLC Controls with Structured Text (ST), V3: IEC
61131-3 and best practice ST programming. BoD-Books on Demand,
2020.

[10] J. O. Blech and S. O. Biha, “On formal reasoning on the semantics
of PLC using Coq,” arXiv preprint arXiv:1301.3047, 2013.

[11] J. O. Blech and S. Ould Biha, “Verification of PLC properties based
on formal semantics in Coq,” in International Conference on Software
Engineering and Formal Methods. ~Springer, 2011, pp. 58-73.

[12] T. Ovatman, A. Aral, D. Polat, and A. O. Unver, “An overview
of model checking practices on verification of PLC software,”
Software & Systems Modeling, vol. 15, no. 4, pp. 937-960, 2016.

[13] H. Janicke, A. Nicholson, S. Webber, and A. Cau, “Runtime-
monitoring for industrial control systems,” Electronics, vol. 4, no. 4,
pp- 995-1017, 2015.

[14] L. Garcia, S. Zonouz, D. Wei, and L. P. De Aguiar, “Detecting PLC
control corruption via on-device runtime verification,” in 2016
Resilience Week (RWS). IEEE, 2016, pp. 67-72.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

D. Darvas, B. F. Adiego, A. Voros, T. Bartha, E. B. Vinuela, and
V. M. G. Suérez, “Formal verification of complex properties on
PLC programs,” in International Conference on Formal Techniques for
Distributed Objects, Components, and Systems. Springer, 2014, pp.
284-299.

D. Darvas, I. Majzik, and E. B. Vifiuela, “Formal verification of
safety PLC based control software,” in International Conference on
Integrated Formal Methods. Springer, 2016, pp. 508-522.

L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mo-
hammed, and S. A. Zonouz, “Hey, my malware knows physics!
Attacking PLCs with physical model aware rootkit.” in NDSS,
2017.

R. Spenneberg, M. Briiggemann, and H. Schwartke, “PLC-Blaster:
A worm living solely in the PLC,” Black Hat Asia, vol. 16, pp. 1-16,
2016.

A. Keliris and M. Maniatakos, “ICSREF: A framework for auto-
mated reverse engineering of industrial control systems binaries,”
arXiv preprint arXiv:1812.03478, 2018.

S. Guo, M. Wu, and C. Wang, “Symbolic execution of pro-
grammable logic controller code,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 2017, pp. 326—
336.

S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel,
“A trusted safety verifier for process controller code.” in NDSS,
vol. 14, 2014.

G. Canet, S. Coulffin, J. Lesage, A. Petit, and P. Schnoebelen,
“Towards the automatic verification of PLC programs written in
instruction list,” in Proceedings of the IEEE International Conference
on Systems, Man & Cybernetics: “Cybernetics Evolving to Systems,
Humans, Organizations, and their Complex Interactions”. IEEE, 2000,
pp. 2449-2454.

J. Xiong, X. Bu, Y. Huang, J. Shi, and W. He, “Safety verification
of IEC 61131-3 Structured Text programs,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 4, pp. 2632-2640, 2020.

M. Zhang, C.-Y. Chen, B.-C. Kao, Y. Qamsane, Y. Shao, Y. Lin,
E. Shi, S. Mohan, K. Barton, J. Moyne et al., “Towards automated
safety vetting of PLC code in real-world plants,” in 2019 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2019, pp. 522-538.
N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus,
M. Remelhe, and O. Stursberg, “Verification of PLC programs
given as sequential function charts,” in Integration of software
specification techniques for applications in Engineering. Springer,
2004, pp. 517-540.

A. Mader and H. Wupper, “Timed automaton models for simple
programmable logic controllers,” in Proceedings of 11th Euromicro
Conference on Real-Time Systems. Euromicro RTS’99. 1EEE, 1999, pp.
106-113.

T. Mertke and G. Frey, “Formal verification of PLC programs
generated from signal interpreted Petri nets,” in 2001 IEEE Inter-
national Conference on Systems, Man and Cybernetics. e-Systems and
e-Man for Cybernetics in Cyberspace (Cat. No. 01CH37236), vol. 4.
IEEE, 2001, pp. 2700-2705.

R. Huuck, “Semantics and analysis of instruction list programs,”
Electronic Notes in Theoretical Computer Science, vol. 115, pp. 3-18,
2005.

J. Sadolewski, “Conversion of ST control programs to ANSI C for
verification purposes,” e-Informatica Software Engineering Journal,
vol. 5, no. 1, 2011.

B. F. Adiego, D. Darvas, E. B. Vifiuela, J.-C. Tournier, V. M. G.
Sudrez, and J. O. Blech, “Modelling and formal verification of
timing aspects in large PLC programs,” IFAC Proceedings Volumes,
vol. 47, no. 3, pp. 3333-3339, 2014.

O. Maler and S. Yovine, “Hardware timing verification using KRO-
NOS,” in Proceedings of the Seventh Israeli Conference on Computer
Systems and Software Engineering. 1EEE, 1996, pp. 23-29.

M. Heiner and T. Menzel, “Petri net semantics for the PLC user
programming language Instruction List,” Techn. Report BTU Cot-
tbus, 1-20/1997, Cottbus December, 1997.

V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM Sigplan Notices, vol. 49, no. 6, pp. 216-226,
2014.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understand-
ing bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, 2011,
pp. 283-294.

J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and

[36]

[37]

[38]

[39]

(40]

[41]

[42]

[43]

[44]

(45]
[46]

(47]

[48]

(49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

17

L. Zhang, “A survey of compiler testing,” ACM Computing Surveys
(CSUR), vol. 53, no. 1, pp. 1-36, 2020.

W. M. McKeeman, “Differential testing for software,” Digital Tech-
nical Journal, vol. 10, no. 1, pp. 100-107, 1998.

R. Schumi and J. Sun, “SpecTest: Specification-based compiler
testing,” Fundamental Approaches to Software Engineering, vol. 12649,
p. 269, 2021.

Y. Huang, X. Bu, G. Zhu, X. Ye, X. Zhu, and J. Shi, “KST: Executable
formal semantics of IEC 61131-3 structured text for verification,”
IEEE Access, vol. 7, pp. 14593-14 602, 2019.

G. Rosu, “K: A semantic framework for programming languages
and formal analysis tools,” Dependable Software Systems Engineer-
ing, vol. 50, p. 186, 2017.

M.]J. Hohnka, J. A. Miller, K. M. Dacumos, T. J. Fritton, J. D. Erdley,
and L. N. Long, “Evaluation of compiler-induced vulnerabilities,”
Journal of Aerospace Information Systems, vol. 16, no. 10, pp. 409426,
2019.

M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar, “Compiler
fuzzing: How much does it matter?” Proceedings of the ACM on
Programming Languages, vol. 3, no. OOPSLA, pp. 1-29, 2019.

T. R. Alves, M. Buratto, F. M. De Souza, and T. V. Rodrigues,
“OpenPLC: An open source alternative to automation,” in IEEE
Global Humanitarian Technology Conference (GHTC 2014). IEEE,
2014, pp. 585-589.

D. Darvas, I. Majzik, and E. Blanco Vifiuela, “Generic representa-
tion of PLC programming languages for formal verification,” in
23rd PhD Mini-Symposium. Budapest University of Technology
and Economics, 2016, pp. 6-9.

N. Roos, “Programming PLCs using structured text,” in Interna-
tional Multiconference on Computer Science and Information Technol-
ogy. Citeseer, 2008, pp. 20-22.

F. Markovic, “Automated test generation for structured text lan-
guage using uppaal model checker,” 2015.

M. Tiegelkamp and K.-H. John, IEC 61131-3: Programming indus-
trial automation systems. Springer, 2010.

N. Marti-Oliet and J. Meseguer, “Rewriting logic: roadmap and
bibliography,” Theoretical Computer Science, vol. 285, no. 2, pp. 121-
154, 2002.

A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu, “Semantics-
based program verifiers for all languages,” ACM SIGPLAN Notices,
vol. 51, no. 10, pp. 74-91, 2016.

C. Ellison and G. Rosu, “An executable formal semantics of C with
applications,” ACM SIGPLAN Notices, vol. 47, no. 1, pp. 533-544,
2012.

D. Bogdanas and G. Rosu, “K-Java: A complete semantics of
Java,” in Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2015, pp. 445-
456.

D. Park, A. Stefinescu, and G. Rosu, “KJS: A complete formal
semantics of JavaScript,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2015, pp. 346-356.

F. Wang, F. Song, M. Zhang, X. Zhu, and J. Zhang, “KRust: A for-
mal executable semantics of Rust,” in 2018 International Symposium
on Theoretical Aspects of Software Engineering (TASE). 1EEE, 2018,
pp. 44-51.

J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational seman-
tics of Solidity,” in 2020 IEEE Symposium on Security and Privacy
(SP). 1IEEE, 2020, pp. 1695-1712.

T. Nipkow and G. Klein, “Imp: A simple imperative language,” in
Concrete Semantics. Springer, 2014, pp. 75-94.

D. D. McCracken and E. D. Reilly, “Backus-Naur Form (BNF),” in
Encyclopedia of Computer Science, 2003, pp. 129-131.

G. Rosu and T. F. Serbanutd, “K overview and simple case study,”
Electronic Notes in Theoretical Computer Science, vol. 304, pp. 3-56,
2014.

E. V. Kuzmin, A. Shipov, and D. A. Ryabukhin, “Construction and
verification of PLC programs by LTL specification,” in 2013 Tools
& Methods of Program Analysis. 1EEE, 2013, pp. 15-22.

D. Darvas, E. Blanco Vinuela, and I. Majzik, “A formal specifica-
tion method for PLC-based applications,” 2015.

B. E. Adiego, D. Darvas, E. B. Vinuela,].-C. Tournier, S. Bliudze,
J. O. Blech, and V. M. G. Sudrez, “Applying model checking to
industrial-sized PLC programs,” IEEE Transactions on Industrial
Informatics, vol. 11, no. 6, pp. 1400-1410, 2015.

[60] M. Hailesellasie and S. R. Hasan, “Intrusion detection in PLC-

[61]

[62]

based industrial control systems using formal verification ap-
proach in conjunction with graphs,” Journal of Hardware and Sys-
tems Security, vol. 2, no. 1, pp. 1-14, 2018.

D. Bohlender and S. Kowalewski, “Compositional verification of
PLC software using horn clauses and mode abstraction,” IFAC-
PapersOnLine, vol. 51, no. 7, pp. 428-433, 2018.

B. C. Rawlings,]. M. Wassick, and B. E. Ydstie, “Application of
formal verification and falsification to large-scale chemical plant
automation systems,” Computers & Chemical Engineering, vol. 114,
pp. 211-220, 2018.

Kun Wang received the B.S. degree in infor-
mation and computing sciences from Chongqing
University of Posts and Telecommunications of
China, in 2017. He received the M.Eng. degree
in Cyberspace Security from Xidian University
of China, in 2020. He is currently pursuing his
Ph.D degree with State Key Laboratory of In-
dustrial Control Technology, Group of Networked
Sensing and Control, Zhejiang University. His re-
search interests include control system security
and formal methods.

Jingyi Wang is currently a tenure-track assis-
tant professor at the College of Control Science
and Engineering, Zhejiang University, China. He
received his Ph.D. from Singapore University of
Technology and Design in 2018, and his bach-
elor’s degree in Information Engineering from
Xi'an Jiaotong University in 2013. He was a re-
search fellow at the School of Computing, Na-
tional University of Singapore during 2019-2020
and at Information Systems Technology and De-
sign Pillar, Singapore University of Technology

and Design during 2018-2019. His research interests include formal
methods, software engineering, cyber-security and machine learning.

Christopher M. Poskitt is an Associate Profes-
sor of Computer Science (Education) at Singa-
pore Management University (SMU), where he
is part of the Centre for Research on Intelligent
Software Engineering. Prior to SMU, he held
postdoctoral research positions at ETH Zirich
and SUTD, and obtained his PhD in Computer
Science from the University of York (2014). His
research broadly addresses the problem of engi-
neering correct and secure software, especially
in the context of cyber-physical systems (e.g. in-

dustrial control systems, autonomous vehicles). In addition to software
engineering, his research interests span formal methods, cybersecurity,
and computer science education.

Xiangxiang Chen received the B.Eng. degree
in mechanical engineering from Xi'an Jiaotong
University, Xi’an, China in 2021. He is work-
ing toward the Ph.D degree in Cyberspace
Security at the 1S2 Lab at School of Control
Science and Engineering, Zhejiang University,
Hangzhou, China. His research interests include
fuzzing and Al system testing.

18

Jun Sun is currently a tenured professor at the
School of Information Systems, Singapore Man-
agement University. He received bachelor’s and
Ph.D. degrees in computing science from the
National University of Singapore (NUS) in 2002
and 2006, respectively. From 2010 to 2019, he
was an assistant/associate professor at the Sin-
gapore University of Technology and Design. He
was a visiting scholar at MIT from 2011 to 2012.
His research focuses on software engineering,
formal methods, program analysis, and cyber-

security. He is the co-founder of the PAT model checker.

Peng Cheng received the B.Sc. degree in au-
tomation and the Ph.D. degree in control science
and engineering, from Zhejiang University, Hang
Zhou, China, in 2004 and 2009, respectively.
From 2012 to 2013, he worked as Research
Fellow in Information System Technology and
Design Pillar, Singapore University of Technol-
ogy and Design. He is currently a Professor with
the College of Control Science and Engineering,
Zhejiang University, Hangzhou, China. His re-
search interests include networked sensing and

control, cyber-physical systems, and control system security.

	Introduction
	Background
	Structured Text
	The K Framework

	Formal Semantics of Structured Text in The K framework
	The Syntax of ST
	The Configuration of ST
	Semantics of the Core Features
	Extended Data Types
	Main Control Statements
	The Declaration and Call of POUs
	Memory Operations

	Testing and Analysing ST Compilers
	Evaluation
	Test Sets
	Experiment Results and Analyses
	Semantic Completeness (RQ1)
	Semantics Correctness (RQ2)
	Finding Bugs in OpenPLC (RQ3)

	Related Work
	Conclusion
	References
	Biographies
	Kun Wang
	Jingyi Wang
	Christopher M. Poskitt
	Xiangxiang Chen
	Jun Sun
	Peng Cheng

