
LawBreaker: An Approach for Specifying Traffic Laws and
Fuzzing Autonomous Vehicles

Yang Sun

Singapore Management University

Singapore

yangsun.2020@phdcs.smu.edu.sg

Christopher M. Poskitt

Singapore Management University

Singapore

cposkitt@smu.edu.sg

Jun Sun

Singapore Management University

Singapore

junsun@smu.edu.sg

Yuqi Chen

ShanghaiTech University

China

chenyq@shanghaitech.edu.cn

Zijiang Yang

GuardStrike Inc.

China

ABSTRACT
Autonomous driving systems (ADSs) must be tested thoroughly

before they can be deployed in autonomous vehicles. High-fidelity

simulators allow them to be tested against diverse scenarios, includ-

ing those that are difficult to recreate in real-world testing grounds.

While previous approaches have shown that test cases can be gener-

ated automatically, they tend to focus on weak oracles (e.g. reaching

the destination without collisions) without assessing whether the

journey itself was undertaken safely and satisfied the law. In this

work, we propose LawBreaker, an automated framework for testing

ADSs against real-world traffic laws, which is designed to be com-

patible with different scenario description languages. LawBreaker
provides a rich driver-oriented specification language for describing

traffic laws, and a fuzzing engine that searches for different ways of

violating them by maximising specification coverage. To evaluate

our approach, we implemented it for Apollo+LGSVL and specified

the traffic laws of China. LawBreaker was able to find 14 violations
of these laws, including 173 test cases that caused accidents.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computer systems organization→ Embedded and
cyber-physical systems.

KEYWORDS
Autonomous vehicles, traffic laws, fuzzing, STL, LGSVL, Apollo

ACM Reference Format:
Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang.

2022. LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Au-

tonomous Vehicles. In 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556897

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00

https://doi.org/10.1145/3551349.3556897

1 INTRODUCTION
Autonomous driving systems (ADSs) combine sensors and software

to control, navigate, and drive autonomous vehicles (AVs). As in-

herently safety-critical systems, ADSs must be comprehensively

tested before they can be deployed on public roads. High-fidelity

simulators (e.g. LGSVL [54], CARLA [17]) play an important role in

this effort as they allow ADSs to be evaluated across a broad range

of scenarios. This includes scenarios that are hard to recreate in

real-world testing grounds, but are important to evaluate since an

incorrect decision by the ADS could lead to an accident [16, 23].

In black box simulator-based testing, the ADS is systematically

evaluated against a number of different scenarios and oracles. Sce-
narios are configurations of objects on a map (e.g. obstacles, pedes-

trians, and vehicles) as well as their dynamic behaviour, and can be

described to different degrees by domain-specific languages (DSLs)

such as Scenic [25], CommonRoad [7], GeoScenario [50], and AVU-

nit [3]. Oracles are ‘pass/fail’ criteria that the ADS must satisfy

under every test scenario [46]. Unfortunately, existing testing frame-

works tend to use weak oracles. AV-Fuzzer [38], for example, eval-

uates ADSs on their ability to complete a journey without getting

too close to other vehicles. Criteria based on getting from A to B

without collisions are no doubt important, but for AVs, the journey

is as important as the destination, and we need richer criteria about

how an AV undertakes it. Jumping red lights at every junction

is clearly unacceptable, for example, even if the ADS manages to

achieve it without collisions.

Fortunately, rich sets of criteria for how a vehicle should un-

dertake a journey already exist: the various national traffic laws.
In addition to avoiding collisions, an ADS should satisfy the traf-

fic laws of the country it operates in. Until we design new traffic

laws specifically for ADSs, existing traffic laws remain the gold

standard for ensuring road safety. Testing an ADS against such

traffic laws, however, is challenging. First, they are typically ex-

pressed in natural language with respect to the driver’s perspective.

This leads to non-intuitive encodings in existing specification lan-

guages that are based on a global view (e.g. [3]). Second, traffic

laws vary across countries, so a general and adaptable specifica-

tion language is necessary (instead of a fixed built-in oracle for

one country). Unfortunately, existing specification approaches for

traffic laws have limited reusability and extensibility. For example,

rulebooks [11, 13] focus on the logic transition process and do not

https://orcid.org/0000-0002-2409-2160
https://orcid.org/0000-0002-9376-2471
https://orcid.org/0000-0002-3545-1392
https://doi.org/10.1145/3551349.3556897
https://doi.org/10.1145/3551349.3556897

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang

Figure 1: High-level workflow of LawBreaker

provide a natural way to describe laws, whereas other formalisa-

tions (e.g. [19, 40, 51, 52]) are tightly coupled with the test scenarios,

i.e. the laws must be customised for each new scenario.

In this work, we present the design and implementation of

LawBreaker, a DSL for specifying traffic laws and an automated

framework for testing ADSs against them. First, our language allows

users to specify traffic laws more naturally from the perspective of

the driver (instead of globally), e.g. “at a junction the driver should

give way to pedestrians when turning right”. Second, LawBreaker
is decoupled from any particular testing scenario, i.e. not only can

the same laws be interpreted across different maps, but they can be

used together with any DSL for generating test scenarios (i.e. place-

ments of vehicles, pedestrians, and obstacles in a map). Finally,

LawBreaker provides a fuzzing engine that searches for different
violations of laws by attempting to cover as many different ways of

violating the specification as possible. These uncovered violations

may then provide clues on how to improve ADSs.

The workflow of LawBreaker is summarised in Figure 1. Users

provide a scenario script, an ADS, a simulator, and some traffic laws

specified using our language. Our fuzzing engine then systemati-

cally generates test cases in the simulator that try to cause the ADS

to violate those laws, revealing flaws to be addressed in the design

of the ADS. These violations are recorded, and can be played back

visually by using the simulator.

Our implementation of LawBreaker consists of: (1) a grammar

parser, which uses antlr4 [4], to extract the elements describing

a scenario and the corresponding traffic laws; (2) a fuzzing en-

gine, that implements our specification-coverage guided fuzzing

algorithm; and (3) a bridge, which connects the grammar parser,

fuzzing engine, ADSs, and simulator to make the whole system

run. We evaluate this implementation using AVUnit [3] for scenario

scripts, LGSVL [54] as the simulator, and different versions of Baidu

Apollo [1, 2] as the ADSs under test. As Apollo was designed by

a Chinese company, we chose to evaluate it under Chinese traffic

laws. In particular, we specified and tested 24 Chinese traffic laws in

LawBreaker, finding that 14 of them were violated by Apollo, and

that 173 of the test cases generated also caused accidents. Videos

of some of these violations can be found online [6].

2 OVERVIEW OF LAWBREAKER
The overall architecture of LawBreaker and how it interfaces with

existing simulators and ADSs is shown in Figure 2. It has three main

components: an existing DSL for describing scenes and scenarios

(AVUnit [3]); our new driver-oriented specification language for

traffic laws, based on signal temporal logic (Section 3); and the

LawBreaker fuzzing algorithm (Section 4). Our architecture is fully

decoupled, and intended to be compatible with different ADSs

(e.g. different versions of Apollo [2] and Autoware [5]).

Figure 2: The architecture of LawBreaker

First, the scenario script component prepares the initial test

case of the simulator by translating the specified scenario into the

required API calls. Second, the traffic law component describes

testing oracles from the driver’s view without needing any partic-

ular knowledge about the map or its agents. Finally, the fuzzing

engine repeatedly extracts a trace from the ADS, evaluates it against

the specification, and uses the outcome to generate new test cases

for the simulator to run. Note that this algorithm uses the gram-

mar of the scenario DSL when generating new testing scenarios.

The simulator itself (e.g. LGSVL or CARLA) treats the ADS as a

black box. When tests are underway, the ADS extracts sensory

information of the AV from the simulator. This includes data from

perception equipment (e.g. camera, Lidar, and GPS) and chassis

control (e.g. brake, gas, and steer).

In order to specify testing scenarios, we utilise an existing DSL

called AVUnit [3]. AVUnit specifies the motions of NPC vehicles and

pedestrians (i.e. non-player characters representing objects other

than the AV under test), and other environment-related information

such as time and weather. AVUnit is a highly expressive language

which allows us to specify detailed scenarios, e.g. the status of every

NPC vehicle as well as their trajectories. We refer the readers to [3]

for details on AVUnit and remark that alternative scenario DSLs

(e.g. Scenic [25]) can be adopted for LawBreaker easily. Note that
even though AVUnit describes the motion task of the ego vehicle,

the trajectory of the ego vehicle is determined by the ADS.

Illustrative Example. Listing 1 presents an example of a traffic law

specification in LawBreaker. In particular, it describes Article #38

of the Regulations for the Implementation of the Road Traffic Safety
Law of the People’s Republic of China [12], which stipulates how a

vehicle should behave with respect to a traffic light at a junction.

An English translation of Article #38 reads as follows:

(1) When the green light is on, vehicles are allowed to pass, but
turning vehicles shall not hinder the passing of vehicles going
straight and pedestrians who are crossing;

(2) When the yellow light is on, vehicles that have crossed the stop
line can continue to pass;

(3) When the red light is on, vehicles are prohibited from passing.
However, vehicles turning right can pass without hindering the
passage of vehicles or pedestrians.

Article #38 is specified as law38 in Listing 1, which in turn consists

of three conjuncts separately describing clauses (1)–(3). In this ex-

ample, we focus on the rules concerning yellow lights in (2), which

are specified as law38_sub2 (Line 10). Note that law38_sub2 is a

LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles ASE ’22, October 10–14, 2022, Rochester, MI, USA

1 Trace trace = EXE(scenario0);

2 // Green Lights

3 law38_sub1_1 = (trafficLightAhead.color == green) & (

stoplineAhead (2) | junctionAhead (2)) & ~

PriorityNPCAhead & ~PriorityPedsAhead;

4 law38_sub1_2 = F[0,2](speed > 0.5);

5 law38_sub1 = G (law38_sub1_1 -> law38_sub1_2);

6

7 // Yellow Lights

8 law38_sub2_1 = ((trafficLightAhead.color == yellow) & (

stoplineAhead (0) | currentLane.number == 0)) -> (F

[0,2] (speed > 0.5));

9 law38_sub2_2 = ((trafficLightAhead.color == yellow) &

stoplineAhead (3.5) & ~stoplineAhead (0) & currentLane

.number > 0) -> (F[0,3] (speed < 0.5));

10 law38_sub2 = G (law38_sub2_1 & law38_sub2_2);

11

12 // Red Lights

13 law38_sub3_1 = ((trafficLightAhead.color == red) & (

stoplineAhead (2) | junctionAhead (2)) & ~(direction

== right)) -> (F[0,3] (speed < 0.5));

14 law38_sub3_2 = ((trafficLightAhead.color == red) & (

stoplineAhead (2) | junctionAhead (2)) & direction ==

right & ~PriorityNPCAhead & ~PriorityPedsAhead) -> (

F[0,2] (speed > 0.5));

15 law38_sub3 = G (law38_sub3_1 & law38_sub3_2);

16

17 law38 = law38_sub1 & law38_sub2 & law38_sub3;

18 trace |= law38;

Listing 1: Specifying Article #38 in LawBreaker

temporal expression (indicated by ‘G’ for ‘always’), which indicates

that its two parts law38_sub2_1 and law38_sub2_2 should always
be satisfied by the vehicle under test.

First, law38_sub2_1 specifies that if the traffic light is yellow

and the vehicle is on the stop line, then the vehicle should proceed

through the junction. Article #38 does not state how quickly the

car should move through the junction in this scenario: like most

traffic laws, there is a degree of ambiguity that is expected to be

resolved by common sense or practice. In LawBreaker, however,
we need to be more precise so that our specification can serve as

an oracle, so we interpret the law as requiring that the vehicle will

‘eventually’ (F) move within the next 𝑑 time steps. The variable 𝑑

can be customised by the user; we set 𝑑 to 2 here.

Second, law38_sub2_2 specifies that if the traffic light is yel-

low and the vehicle is a safe distance away from the stop line,

then the vehicle is expected to eventually (‘F’) stop within the

next three time steps. The laws regarding green (law38_sub1) and
red (law38_sub3) lights are defined in a similar manner using the

temporal and Boolean operators of LawBreaker.
Ultimately, the goal of LawBreaker is to be able to automatically

generate test scenarios in which these specifications are violated.
Furthermore, it aims to find as many different ways of violating the

laws as possible, e.g. by finding different counterexamples for each

of the sub-expressions (e.g. law38_sub2_1). To illustrate this, con-

sider the following two test cases generated by LawBreaker. In the

first test case, the AV already reached the stop line when the traffic

light turned from green to yellow, but hesitated for long enough

that it actually crosses the intersection during a red light. Hence,

the AV violates not only the law38_sub2_1 but also law38_sub3_1.
In the second test case, the AV rushed the yellow light and caused

𝐹𝑜𝑟𝑚𝑢𝑙𝑎 −→ 𝐵𝑜𝑜𝑙𝐸𝑥𝑝𝑟 | ’∼’𝐹𝑜𝑟𝑚𝑢𝑙𝑎 | 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 ’&′ 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 |
𝐹𝑜𝑟𝑚𝑢𝑙𝑎 ’|’ 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 | 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 ’U’ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 |
’G’ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 | ’F’ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 | ’N’ 𝐹𝑜𝑟𝑚𝑢𝑙𝑎

𝐵𝑜𝑜𝑙𝐸𝑥𝑝𝑟 −→ 𝑥𝑏 | 𝑒1 ⊕ 𝑒2

Figure 3: Syntax of LawBreaker formulas, where 𝑥𝑏 is a Bool
variable; 𝑒1 and 𝑒2 are expressions; and ⊕ is a relational oper-
ator, i.e. ⊕ ∈ {=, >, <, ≤, ≥}

an accident. In this situation, the AV violated law38_sub2_2 by

rushing through even though there was enough distance to stop.

3 SPECIFYING TRAFFIC LAWS
We introduce the syntax and semantics of our DSL for specifying

driver-oriented traffic laws and present our main case study.

3.1 Syntax and Semantics
We first need the concept of a trace for understanding the syntax
of our specification language. A trace is a sequence of scenes, and

a scene is a snapshot of the world (i.e. the status of all vehicles,

pedestrians, and so on). In LawBreaker, we offer a range of variables
which allow us to extract relevant information from the scene,

forming the building blocks of our specification language.

At the top-level, our specification language takes the form of

temporal logic formulas. The syntax is shown in Figure 3, where

U, G, F, and N respectively represent the temporal operators ‘until’,

‘always’, ‘eventually’, and ‘next’. Furthermore, 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is a real-

time interval [𝑎, 𝑏] in which 𝑎 and 𝑏 are numerical expressions.

Intuitively, the formula 𝑓1 U[a, b] 𝑓2 (with 𝑓1, 𝑓2 derived from

𝐹𝑜𝑟𝑚𝑢𝑙𝑎) expresses that 𝑓1 is true at every time point 𝑡 of the

trace until 𝑓2 becomes true within the time interval [𝑡 + 𝑎, 𝑡 + 𝑏].
Similarly, G[a, b]𝑓1 (resp. F[a, b]𝑓1) is true if the formula 𝑓1 always

(resp. eventually) holds in time interval [𝑡 + 𝑎, 𝑡 + 𝑏] for every time

point 𝑡 . Finally, N 𝑓1 holds if 𝑓1 is true in the next time point.

Temporal formulas are defined over Boolean expressions, which

are built over several domain-specific variables related to the driver

and its immediate surroundings. For example, the Bool variable

isTrafficJam is true if there is a traffic jam ahead of the AV under

test. Using this variable is more convenient, for example, than a

‘global’ approach which would require some quantification over

all other NPC vehicles and a judgement based on the direction of

travel and the position of the AV. As there are a range of variables

in our language, we organise them into a few categories.

Car and Driving Status Variables. Car status variables can be

used to describe properties involving the lights, engine, horn, and di-

rection of the AV. The properties supported by LawBreaker are sum-

marised in Table 1. These variables are self-explanatory (e.g. hornOn
is true if and only if the horn is sounding) and are either of Bool or

enumerated type.

Driving status variables can be used to describe the speed, ac-

celeration, and braking status of the AV. Furthermore, there are

Bool variables that capture manouevres that the AV is currently

undertaking, e.g. changing lanes, overtaking another vehicle, or

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang

Table 1: Car status variables in LawBreaker

Variable Type Remarks

highBeamOn Bool –

lowBeamOn Bool –

turnSignal Enum off, left, or right
fogLightOn Bool APIs not available in Apollo

hornOn Bool –

warningFlashOn Bool APIs not available in Apollo

gear Enum NEUTRAL, DRIVE, REVERSE, PARK, LOW,
INVALID, or NONE

engineOn Bool –

direction Enum forward, left, right
toManual Bool True if and only if AV control passed

to human operator

Table 2: Driving status variables in LawBreaker

Variable Type Remarks

speed Number Speed of ego vehicle (km/h)

acc Number Acceleration of ego veh. (m/s
2
)

brake Number Braking percentage of ego veh. (%)

isChangingLane Bool –

isOverTaking Bool –

isTurningAround Bool –

Table 3: Road variables in LawBreaker

Variable Type Remarks

currentLane Lane –

speedLimit SpeedLimit –

streetLightOn Bool –

honkingAllowed Bool –

crosswalkAhead(n) Bool Within distance n
junctionAhead(n) Bool Within distance n

specialLocationAhead(n) SpecialLocation Within distance n
stoplineAhead(n) Bool Within distance n

turning around. Table 2 summarises them.

Road Variables. Road variables, summarised in Table 3, capture

properties of the road the AV is currently driving on, e.g. whether or

not honking is allowed, the street light is on, or whether a junction

is within 𝑛 units of distance ahead of the AV. Most of the variables

are self-explanatory, but three of them are based on special types.

First, currentLane returns the lane that the AV is currently on.

This is an object lane of type Lane, containing information such as

the number of the current lane (lane.number), the side of the road
that the lane is on (lane.side), and the allowed direction of travel

(lane.direction). This can include values such as left, right,
UTurn, and various other combinations (e.g. forwardOrRight).

Second, speedLimit returns an object limit of type SpeedLimit.
This contains information such as the lower (limit.lowerLimit)
and upper (limit.upperLimit) speed limits of the road. If a road

does not have speed limits, the default values of these attributes

will respectively be −∞ and +∞.

Finally, specialLocationAhead(n) returns an object location
of type SpecialLocation. This contains attribute location.type,
which can have one of the following values: Railway_J, Bridge,
SharpTurn, SteepSlope, Tunnel, ArchBridge, Slope, Flooded,
OnewayRoad, Roundabout, or None (i.e. none of the above).

Table 4: Signal variables in LawBreaker

Variable Type Remarks

stopSignAhead(n) Bool Within distance n
noUTurnSignAhead(n) Bool Within distance n

signalAhead Enum Common, Arrow, or None
trafficLightAhead Signal –

Table 5: Traffic variables in LawBreaker

Variable Type Remarks

PriorityNPCAhead(l/r) Bool Vehicle with right of way

PriorityPedsAhead(l/r) Bool Pedestrian with right of way

NPCAhead NPC –

NPCBack NPC –

NPCLeft NPC –

NPCRight NPC –

nearestNPC NPC –

NPCOpposite NPC –

isTrafficJam Bool –

Signal Variables. Signal variables, summarised in Table 4, allow

for the specification of laws involving traffic lights and various

signs (e.g. stop signs) at the junction an AV is approaching. Two of

the variables are self-explanatory Bool types, but the other two con-

sist of richer data. First, signalAhead is of enumerated type. The

value Common indicates a traffic light in which all lights are circles,

whereas the value Arrow indicates one in which (some of) the lights

are arrows. None indicates that there is no traffic light ahead. Sec-

ond, trafficLightAhead returns an object signal of type Signal.
This consists of information such as the current colour of the traffic

light (signal.color), which can be yellow, green, red, or black;
whether or not the light is blinking (signal.isBlinking); and
signal.arrow, which returns an object arrow of type SignalArrow
that contains similar information to Signal objects but also the

direction of the arrow.

Traffic Variables. Traffic variables, summarised in Table 5, are

associated with other vehicles (NPCs) sharing the road with the

AV, as well as any pedestrians crossing it. PriorityNPCAhead(l/r)
indicates if there is an NPC vehicle ahead with priority over the ego

vehicle, e.g. due to priority at junctions, or due to the NPC being an

ambulance. The variable PriorityPedsAhead(l/r) indicates that
there is a pedestrian with priority right of way ahead: pedestrians

on a crosswalk, for example, have higher priority and are considered

to be ‘ahead’ if they are within five metres of the ego vehicle. In both

cases, the ego vehicle must not hinder the movement of the priority

NPC/pedestrian when turning. Note that for the customisation of

traffic laws across different countries, we can use l/r to represent

the different sides of the driver position: PriorityNPCAhead(l) and
PriorityPedsAhead(l) if the driver position of the country/region
is at the left side, and r if it is at the right. By default, the driver

position will be treated as left for both variables.

The variables NPCAhead, NPCBack, NPCALeft, NPCRight,
nearestNPC, and NPCOpposite respectively represent the NPC ve-

hicle in front of the ego vehicle, the one behind, the one on the left,

the one on the right, the one that is closest, and the one that is oppo-

site. These variables return objects npc of type of NPC, which contain
information such as the speed of the NPC vehicle (npc.speed), the
direction of the NPC vehicle (npc.direction), the type of the NPC

LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 6: Map variables in LawBreaker

Variable Type Remarks

weather Weather Current weather conditions

time Time Current day/time

vehicle (npc.type), as well as npc(n), which is true if the NPC is

within 𝑛 units of distance from the ego vehicle. Note that the value

of npc.type can have one of the following values: bus, car, priori-

tyVehicle, or None.

Map Variables. The map variables, shown in Table 6, are used

to specify traffic laws related to environment conditions, e.g. the

weather or time of day. The variable weather returns an object w
of type Weather, consisting of information such as the degree of

rain (w.rain, valued from 0 to 1), degree of fog (w.fog), or degree
of snow (w.snow), and the current visibility in metres.

Semantics. Our specifications are interpreted over execution traces
from the ADS. An execution trace 𝜋 is a sequence of scenes, de-

noted as 𝜋 = ⟨𝜃0, 𝜃1, . . . , 𝜃𝑛 ⟩. A scene 𝜃 is a tuple of the form 𝜃 =

(𝑓0, 𝑓1, . . . , 𝑓𝑥) where 𝑓𝑖 is the valuation of all of the above-mentioned

variables.

Given a trace 𝜋 , we write 𝜋 ⊨ Φ (resp. 𝜋 ⊭ Φ) to denote that Φ
evaluates to be true (resp. false) given trace 𝜋 . We use the standard

definition of ⊨ for STL formulas (see e.g. [41]).

3.2 Case Study: Modelling China’s Traffic Laws
Extending the illustrative example from Section 2, as our main case

study, we examined all of the traffic laws in the Regulations for
the Implementation of the Road Traffic Safety Law of the People’s
Republic of China [12]. We labelled each rule with the following

flags: relevant, if the rule constrains an AV’s behaviour in some way;

describable, if it can be specified using LawBreaker; and testable, if
the rule can potentially be tested in existing simulators (e.g. LGSVL).

A summary of the labels for China’s traffic laws is given in Table 7,

and fully translated formulas for the describable laws can be found

on our website [6]. (Our supplementary material [6] also includes

detailed translations of Singapore’s traffic laws, demonstrating the

generality of the language.)

While all laws are relevant, some of them are not describable

in LawBreaker. A typical example is Article #65, which requires

drivers to “obey the instructions” of ferry management personnel

(this is too vague for our language to describe). A number of rules

are not testable due to lack of support in the underlying simula-

tor. For example, Article #43 regulates the behaviour of vehicles

when crossing a railway track. While our language and fuzzer can

be extended to cover such situations, railway tracks are not yet

supported in the current maps of the simulator. Additional details

are presented later, in Section 5.2, as part of our evaluation.

We present two of the translated traffic laws to highlight how

the language is used.

Article #42: Yellow Lights. Article #42 stipulates that when a

vehicle passes over a junction with flashing yellow light, it needs

to ensure safety when passing through:

Table 7: Summary of Chinese traffic rules

Category Metric Relevant Describable Testable

General

Count 8 8 3
Percent 100% 100% 37.5%

Vehicles

Count 40 37 21
Percent 100% 92.5% 52.5%

Highway

Count 12 12 0
Percent 100% 100% 0%

Others

Count 0 0 0

Percent - - -

“The flashing warning signal light is a yellow light that continues
to flash, reminding vehicles and pedestrians to pay attention when
passing through, and pass after confirming safety.”

This is an example of an ambiguous (or vague) traffic law that

requires a specific formalisation in LawBreaker. In particular, we

can specify it as follows:

1 proposition1 = trafficLightAhead.color== yellow &

trafficLightAhead.blink & (stoplineAhead (10) |

junctionAhead (10));

2 proposition2 = F[0 ,2]((speed <20) U ~NearestNPC (15));

3 law42 = G(proposition1 -> proposition2);

The above translation expresses that when a flashingwarning signal

is 𝑣1 meters ahead, the ego vehicle should move at a speed of less

than 𝑣2 𝑘𝑚/ℎ until there are no other vehicles within 𝑣3 meters in

the coming 𝑣4 time steps. The value of variables 𝑣1, 𝑣2, 𝑣3, 𝑣4 can be

customised by the user: here, we instantiated them with the values

10, 20, 15, and 2.

Note that the user can also customise these traffic laws in their

own way, for instance, users can add constraints regarding pedes-

trians ahead by using the signal variable PriorityPedsAhead in

the formula.

Article #52: Priority. Article #52 stipulates priority issues regard-

ing vehicles, in particular, that the vehicle should give way to the

vehicles with higher priority:

“When a motor vehicle passes through an intersection that is not
controlled by traffic lights or commanded by traffic police, in addition
to complying with the provisions of Article #51 (2) and (3), it shall
also comply with the following provisions:

(1) If there are traffic signs and markings, let the party with prior-
ity go first;

(2) If there is no traffic sign or marking control, stop and look
at the intersection before entering the intersection and let the
traffic on the right road go first;

(3) Turning motor vehicles let vehicles going straight go first;
(4) A right-turning motor vehicle driving in the opposite direction

should let the left-turning vehicle go first.”
This is an example of how our driver-oriented specification ap-

proach can lead to a simpler specification than an equivalent glob-

ally specified property (as in AVUnit [3]). In LawBreaker, we can
describe sub-rules 2–4 of Article #52 in the following way:

1 prop1 = signalAhead ==None & junctionAhead (0.5);

2 prop2 = F[0 ,2]((speed <0.5)U(~ PriorityNPCAhead));

3 law52 = G(prop1 -> prop2);

The above translation expresses that when there is an intersection

without traffic lights ahead, the ego vehicle is expected to stop

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang

until there is no vehicle with higher priority ahead. In order to

simplify the specification of this traffic law, we utilise the signal

variable PriorityNPCAhead to check whether there is a priority

vehicle ahead. The design principle behind PriorityNPCAhead can
be found in Section 3.1: ultimately, this signal variable allows a

direct translation of the traffic law.

4 THE LAWBREAKER FUZZING ENGINE
In the real world, traffic laws can be violated in multiple different

ways. For instance, as shown in Section 2, there are two ways to

violate Article #38’s yellow light sub-rule: failing to move when

the ego vehicle has already reached the stop line, and failing to

stop when the ego vehicle is at a safe stopping distance before

it. Both of these violations are interesting, but for very different

reasons: the first leads to an AV that is driving less efficiently than

it (legally) might, whereas the second is quite dangerous and could

increase the likelihood of a traffic accident. In general, we need a

fuzzing approach that can find as many different ways of violating a

specification as possible, as multiple test cases will help to pinpoint

the key problems in the ADS.

In this section, we present a fuzzing algorithm based on the idea

of: (1) identifying the different possible ways of violating a law

specification Φ in our language, then (2) searching for concrete test

cases that come ‘closer’ (as measured by a quantitative semantics)

to violating Φ in the different ways that were identified.

4.1 Specification Violation Coverage
Given a law specification Φ, we write Θ(Φ) to denote a set of con-

straints that represents different ways in which Φmight be violated.

Formally, Θ(Φ) is a set of formulas which satisfies the following

proposition:

Proposition 4.1. Let Φ be an STL formula and 𝜋 a trace. Then:

∀𝜉 ∈ Θ(Φ) . 𝜋 ⊨ 𝜉 =⇒ 𝜋 ⊭ Φ

□

In LawBreaker, Θ(Φ) is computed as follows:

Θ(𝜇) = {¬𝜇},𝑤ℎ𝑒𝑟𝑒 𝜇 𝑖𝑠 𝑎 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

Θ(𝜃1 ∧ 𝜃2) = Θ(𝜃1) ∪ Θ(𝜃1)
Θ(𝜃1 ∨ 𝜃2) = {𝑥 ∧ 𝑦 | 𝑥 ∈ Θ(𝜃1) ∧ 𝑦 ∈ Θ(𝜃2)}

Θ(¬𝜃1) = 𝑁 (𝜃1)
Θ(□I𝜃1) = {^I 𝜃 | 𝜃 ∈ Θ(𝜃1)}
Θ(^I𝜃1) = {□I 𝜃 | 𝜃 ∈ Θ(𝜃1)}

Θ(𝜃1UI𝜃2) = {𝑥 UI 𝑦 | 𝑥 ∈ Θ(¬𝜃1 ∨ 𝜃2) ∧ 𝑦 ∈ Θ(𝜃1 ∨ 𝜃2)}
∪ {𝑥 ∧ 𝑦 | 𝑥 ∈ Θ(𝜃1) ∧ 𝑦 ∈ Θ(𝜃2)}

Θ(⃝𝜃1) = {⃝𝑥 | 𝑥 ∈ Θ(𝜃1)}
where𝑁 (Φ) represents different ways in whichΦmight be satisfied,

i.e., 𝑁 (Φ) is a set of formulas satisfying the following condition:

∀𝜉 ∈ 𝑁 (Φ). 𝜋 ⊨ 𝜉 =⇒ 𝜋 ⊨ Φ

It is systematically computed as follows:

𝑁 (𝜇) = {𝜇},𝑤ℎ𝑒𝑟𝑒 𝜇 𝑖𝑠 𝑎 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑁 (𝜃1 ∧ 𝜃2) = {𝑥 ∧ 𝑦 | 𝑥 ∈ 𝑁 (𝜃1) ∧ 𝑦 ∈ 𝑁 (𝜃2)}
𝑁 (𝜃1 ∨ 𝜃2) = 𝑁 (𝜃1) ∪ 𝑁 (𝜃2)

𝑁 (¬𝜃1) = Θ(𝜃1)
𝑁 (□I𝜃1) = {□I 𝜃 | 𝜃 ∈ 𝑁 (𝜃1)}
𝑁 (^I𝜃1) = {^I 𝜃 | 𝜃 ∈ 𝑁 (𝜃1)}

𝑁 (𝜃1 UI 𝜃2) = {𝑥 UI 𝑦 | 𝑥 ∈ 𝑁 (𝜃1) ∧ 𝑦 ∈ 𝑁 (𝜃2)}
𝑁 (⃝𝜃1) = {⃝𝜃 | 𝜃 ∈ 𝑁 (𝜃1)}

Proposition 4.1 can be proven by structural induction. The detailed

proof can be found in our supplementary materials [6].

Example 4.2. The value of Θ(Φ) is calculated recursively. For
example, given a specification Φ = □((𝑎 ∨ 𝑏) → 𝑐), before the
calculation of Θ, we first pre-process Φ to get Φ′ = □(¬(𝑎 ∨ 𝑏) ∨ 𝑐).
The formula Φ is equivalent to Φ′. Then, we can get Θ(Φ) as follows:

(1) Calculation of the primitive elements:
Θ(𝑐) = {¬𝑐}, 𝑁 (𝑎) = {𝑎}, 𝑁 (𝑏) = {𝑏}

(2) Given 𝑁 (𝑎) = {𝑎} and 𝑁 (𝑏) = {𝑏}: 𝑁 (𝑎 ∨ 𝑏) = {𝑎, 𝑏}
(3) Given 𝑁 (𝑎 ∨ 𝑏): Θ(¬(𝑎 ∨ 𝑏)) = {𝑎, 𝑏}
(4) Given Θ(¬(𝑎 ∨ 𝑏)) and Θ(𝑐):

Θ(¬(𝑎 ∨ 𝑏) ∨ 𝑐) = {𝑎 ∧ ¬𝑐, 𝑏 ∧ ¬𝑐}
(5) Given Θ(¬(𝑎 ∨ 𝑏) ∨ 𝑐):

Θ(□(¬(𝑎 ∨ 𝑏) ∨ 𝑐)) = {^(𝑎 ∧ ¬𝑐),^(𝑏 ∧ ¬𝑐)}
(6) The final result is Θ(Φ) = {^(𝑎 ∧ ¬𝑐),^(𝑏 ∧ ¬𝑐)}.

i.e. we can ‘cover’ the different ways of violating the original specifi-
cation Φ by finding traces that satisfy ^(𝑎 ∧ ¬𝑐) and ^(𝑏 ∧ ¬𝑐).

4.2 Quantitative Semantics
Given a formula Φ, the overall idea of our fuzzing algorithm is to

systematically generate test cases to violate each STL formula 𝜑 ∈
Θ(Φ), if feasible. We thus first adopt a quantitative semantics for

our specification language, which allows us to iteratively generate

test cases that come ‘closer’ to violating a given formula.

The quantitative semantics is adopted from [14, 41, 47], which,

intuitively speaking, defines the semantics of a formula 𝜑 with

respect to a trace 𝜋 in the form of a robustness value, i.e. a number

representing how far 𝜑 is from being satisfied by 𝜋 . Our algorithm

then attempts to maximise this number so as to generate a violation.

Definition 4.3 (Quantitative Semantics). Given a trace 𝜋 and a

formula 𝜑 , the quantitative semantics is defined as the robustness

degree 𝜌 (𝜑, 𝜋, 𝑡) where 𝑡 is the time step:

𝜌 (𝜇, 𝜋, 𝑡) = 𝑓 (𝜋) (𝑡),
𝜌 (¬𝜑, 𝜋, 𝑡) = −𝜌 (𝜑, 𝜋, 𝑡),

𝜌 (𝜑1 ∧ 𝜑2, 𝜋, 𝑡) = min{𝜌 (𝜑1, 𝜋, 𝑡), 𝜌 (𝜑2, 𝜋, 𝑡) },
𝜌 (𝜑1 ∨ 𝜑2, 𝜋, 𝑡) = max{𝜌 (𝜑1, 𝜋, 𝑡), 𝜌 (𝜑2, 𝜋, 𝑡) },

𝜌 (𝜑1 UI 𝜑2, 𝜋, 𝑡) = sup

𝑡′∈𝑡+𝐼
min{𝜌 (𝜑2, 𝜋, 𝑡

′), inf

𝑡′′∈[𝑡,𝑡′]
𝜌 (𝜑1, 𝜋, 𝑡

′′) },

𝜌 (^I𝜑, 𝜋, 𝑡) = sup

𝑡′∈𝑡+I
𝜌 (𝜑, 𝜋, 𝑡 ′),

𝜌 (□I𝜑, 𝜋, 𝑡) = inf

𝑡′∈𝑡+I
𝜌 (𝜑, 𝜋, 𝑡 ′),

𝜌 (⃝𝜑, 𝜋, 𝑡) = 𝜌 (𝜑, 𝜋, 𝑡 + 1) .

If 𝜌 (𝜑, 𝜋, 𝑡) is equal to or greater than 0, we successfully found a

way to violate Φ. Note that 𝜌 (𝜑, 𝜋) is treated as 𝜌 (𝜑, 𝜋, 0).

LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles ASE ’22, October 10–14, 2022, Rochester, MI, USA

Example 4.4. Given a traffic law Φ = □(𝑠𝑝𝑒𝑒𝑑 < 80) which means
the speed of the ego vehicle should always be less than 80𝑘𝑚/ℎ, sup-
pose the 𝑠𝑝𝑒𝑒𝑑 over a trace 𝜋 is {(𝑡, 𝑠) : (𝑡0, 0) , (𝑡1, 0) , (𝑡2, 0.5) , (𝑡3, 1.8) ,
(𝑡4, 4.5) , (𝑡5, 7.9) , (𝑡6, 10.9) , . . . , (𝑡39, 85) , . . .} where the maximum value
of 𝑠𝑝𝑒𝑒𝑑 is 85𝑘𝑚/ℎ at time step 𝑡39, and the relevant specification
𝜑 ∈ Θ(Φ) is 𝜑 = ^ (𝑠𝑝𝑒𝑒𝑑 > 80) , then we have 𝜌 (𝜑, 𝜋) = 𝜌 (𝜑, 𝜋, 0) =
𝑚𝑎𝑥𝑡′∈[0,|𝜋 |] (𝑠𝑝𝑒𝑒𝑑 (𝑡 ′) − 80) = 5 > 0. It means the specification 𝜑 is
satisfied by 𝜋 which leads to a violation of the traffic law Φ.

4.3 Genetic Encoding for Scenarios
Our fuzzing algorithm is based on a genetic algorithm (GA) [43], and

requires an appropriate genetic encoding for the targeted scenario

description language, as well as a customisation of the crossover

and mutation operators.

In this work, we adopt the AVUnit [3] scenario description lan-

guage, which describes a test case in terms of the ego vehicle,

NPC vehicles, pedestrians, static obstacles, and the environment

(e.g. weather). We encode scenarios in terms of their operable pa-

rameters. For the ego vehicle, the operable parameter is its starting

point. For NPCs, all parameters are operable except the speed at

their destinations (which is always zero). Finally, for static obsta-

cles and the environment, all parameters are operable. Note that in

valid encodings, vehicles must always be positioned within a lane

or junction area, pedestrians may move around empty regions of

the map, and obstacles can be placed anywhere (e.g. a basketball

on the road, or even a meteorite on the crosswalk).

For parameters with continuous values (e.g. position, speed, and

weather), we apply Gaussian mutation. We also apply the clipping

function to avoid invalid values.

For each pair of test cases, the genetic crossover operation can

only be done in the same category (e.g. position, NPC type). In

theory, we can perform crossover for each category, but to avoid

generating infeasible scenarios, we do not perform crossover on

the chromosomes encoding vehicle and pedestrian positions.

Note that since the crossover andmutation operations are always

limited to the valid space of the operable parameters, the newly

generated test cases are always valid.

4.4 Fuzzing Algorithm
We are now ready to present the overall fuzzing algorithm of

LawBreaker, which directly utilises Θ(Φ) (i.e. the different possible
ways to violate Φ) and 𝜌 (𝜉, 𝜋) (i.e. how ‘close’ we are to violating

the formula 𝜉). Note that 𝜉 ∈ Θ(Φ).
Our fuzzing approach is detailed in Algorithm 1. First, we gener-

ate some initial test cases randomly then initialise 𝑆𝑒𝑒𝑑𝑠𝑟 as empty

and 𝑅𝑜𝑏𝑢𝑠𝑡𝑟 as −∞. Note that 𝑆𝑒𝑒𝑑𝑠𝑟 and 𝑅𝑜𝑏𝑢𝑠𝑡𝑟 are mappings

from the remaining formulas in Θ𝑟 to the corresponding test cases

and robustness scores. For every test case in a generation, we

execute it to obtain trace 𝜋 and compute the robustness 𝜌 (𝜉, 𝜋)
for all the uncovered 𝜉 ∈ Θ𝑟 . We remove 𝜉 once it is satisfied,

i.e. 𝜌 (𝜉, 𝜋𝑖) ≥ 0, and add the corresponding scenario 𝑠𝑖 to the

output set Γ. If some 𝜉 is not satisfied, we update 𝑆𝑒𝑒𝑑𝑠𝑟 (𝜉) and
𝑅𝑜𝑏𝑢𝑠𝑡𝑟 (𝜉) when the current trace is closer to the satisfaction of 𝜉 ,

i.e. 𝜌 (𝜉, 𝜋𝑖) > 𝑅𝑜𝑏𝑢𝑠𝑡𝑟 (𝜉).
After executing and processing all of the test cases of a popu-

lation, we generate the population for the next generation based

Algorithm 1: LawBreaker Fuzzing Algorithm

Input: Φ, 𝑛 (population size), and𝑀 (maximal generations)

Output: A test suite Γ
1 Let Θ𝑟 = Θ(Φ) be the set of uncovered formulas in Θ(Φ) ;
2 Let 𝑆𝑒𝑒𝑑𝑠𝑟 be a mapping from Θ𝑟 to tests, initially empty;

3 Let 𝑅𝑜𝑏𝑢𝑠𝑡𝑟 be a mapping from Θ𝑟 to robustness, initially −∞;

4 Let𝐺 = {𝑠1, · · · , 𝑠𝑛 } be a set of randomly generated tests;

5 Let Γ be an empty set;

6 while Θ𝑟 is not empty and not timeout do
7 for each 𝑠𝑖 in𝐺 do
8 Execute 𝑠𝑖 via simulation and obtain trace 𝜋𝑖 ;

9 for each 𝜉 in Θ𝑟 do
10 Compute the robustness 𝜌 (𝜉, 𝜋𝑖) ;
11 if 𝜌 (𝜉, 𝜋𝑖) ≥ 0 then
12 Remove 𝜉 from Θ𝑟 ; Add 𝑠𝑖 into Γ;

13 end
14 else if 𝜌 (𝜉, 𝜋𝑖) > 𝑅𝑜𝑏𝑢𝑠𝑡𝑟 (𝜉) then
15 Set 𝑆𝑒𝑒𝑑𝑠𝑟 (𝜉) to be 𝑠𝑖 ;

16 Set 𝑅𝑜𝑏𝑢𝑠𝑡𝑟 (𝜉) to be 𝜌 (𝜉, 𝜋𝑖 , 𝑡) ;
17 end
18 end
19 end
20 Set𝐺 to be a set of new test cases generated based on 𝑆𝑒𝑒𝑑𝑠𝑟

through selection, mutation and crossover;

21 end
22 return Γ

on 𝑆𝑒𝑒𝑑𝑠𝑟 and 𝑅𝑜𝑏𝑢𝑠𝑡𝑟 . Since the size of 𝑆𝑒𝑒𝑑𝑠𝑟 is equal to the size

of Θ𝑟 , it may be larger or smaller than the population size, and

thus we select parents as follows. We first sort 𝑆𝑒𝑒𝑑𝑠𝑟 according to

𝑅𝑜𝑏𝑢𝑠𝑡𝑟 in descending order. Note that the greater the robustness

value is, the more likely the test case leads to a new violation of

the traffic law Φ. To add some uncertainty, we first choose an indi-

vidual from the first half of the population, and then we select an

individual from the overall population by random sampling. From

these two selected individuals, the individual with the higher score

of robustness is chosen. Note that the higher the score, the closer

the test case is to the targeted violation. We repeat this selection

process until a given number of the parent population is selected.

(This number can be chosen by the user.)

With the parents set selected, we apply crossover and mutation

as defined in Section 4.3 to obtain the next generation. This process

is repeated until all the elements in set Θ(Φ) are covered or the

maximal number of generations has been reached. Note that the

maximal number of generations𝑀 is defined by the user.

5 IMPLEMENTATION AND EVALUATION
In this section, we present our implementation and evaluation of

LawBreaker based on an existing popular simulation framework.

5.1 Implementation
Implementing LawBreaker for a given ADS and simulator requires

the completion of the following three steps: (1) construction of a

bridge for collecting messages from the ADS and spawning scenar-

ios in the simulator; (2) implementation of a library for converting

those messages into signals for the traffic law language in Section 3;

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang

and (3) implementation of the fuzzing engine in Section 4. Our

source code of all three components for Apollo+LGSVL is available

online [6].

In this work, we implemented a bridge for the Apollo 5.0 and

Apollo 6.0 ADSs. Our bridge retrieves messages from the ADS that

include the driving status of the ego vehicle (e.g. speed, position,

high beam) and the environment (e.g. status of NPC vehicles and

nearby traffic signals) at different time steps. Currently, the per-

ception part of both Apollo versions is still under development, so

we follow the recommendation of the vendor and use the ground

truth as the input of the PerceptionObstacle module. Our bridge

allows for all the operable parameters mentioned in Section 4.3

(e.g. trajectories of NPC vehciles and pedestrians) to be translated

to API calls in the simulator, thus spawning scenarios based on our

genetic encoding.

With the bridge retrieving the original messages from the ADS,

we then use our library to translate these messages into the signal

variables described in Section 3. Some signal variables are quite

intuitive. For instance, the signal variables speed, acc, brake are the
speed, acceleration, and brake percentages of the ego vehicle, and

we obtain these through a simple analysis of ADS messages from

different time steps. However, some signal variables require more

complex processing. For example, it takes a few steps to calculate

the value of signal PriorityPedsAhead at time step t. First, we
calculate the ‘area ahead’ with respect to the current position and

direction of the ego vehicle. Then, we check whether there is a

pedestrian within that area based on the positions of pedestrians.

If so, we check whether the pedestrian is likely to cross based on

their distance to a crosswalk. If both are satisfied, then the value of

the signal PriorityPedsAhead at that time step is set to be true,

otherwise false.

Finally, we implemented the fuzzing engine as described in Sec-

tion 4.4. Our implementation supports six kinds of mutations, i.e.,

mutation of position, speed, time, weather, NPC vehicle type, and

pedestrian type. Furthermore, we embedded the tool RTAMT [47]

to compute the robustness of the specifications with respect to the

trace obtained from the bridge.

5.2 Evaluation
In the following, we conduct multiple experiments to answer our

key Research Questions (RQs). Since LawBreaker is designed for

the description and evaluation of traffic laws across different coun-

tries, we evaluate it from three aspects: versatility, effectiveness,

and efficiency, which correspond to our three RQs.

RQ1: Can we test AVs against traffic laws using LawBreaker?
To answer this question, we systematically examined all Chinese

traffic laws related to AVs and determined whether or not they were

describable and testable (as per Section 3.2) using LawBreaker. In
addition, we examine whether the same laws can be expressed using

alternative specification approaches provided by other frameworks.

A number of existing works [3, 19, 40, 51, 52] propose meth-

ods of evaluating AVs under different oracles, and we compare

against the ones that are capable of specifying (at least some) traf-

fic laws. In particular, we compare against formalisations in Is-

abelle/HOL (FIH) [52], for Machine Interpretability (FMI) [19], in

Table 8: Testing AVs, where ×, Δ, and √
means no support,

limited support and full support respectively

Traffic Laws FIH FMI FTL FA AVUnit LawBreaker
D D D D D T D T Why ¬𝐷 ∨ ¬𝑇

Law38 sub1-3 × × × × Δ Δ
√ √

-

Law40-43 × × × × × × √ × Lack Map Support

Law44 × Δ Δ × × × √ √
-

Law45

sub1 × √ √
Δ

√ √ √ √
-

sub2 × √ √
Δ

√ √ √ √
-

Law46

sub1 × × Δ × × × √ × Lack Map Support

sub2 × × × × × × √
Δ Lack Map Support

sub3 × × × × × × √ √
-

sub4 × × × × × × √ × Lack Map Support

Law47

√
Δ Δ × × × √ √

-

Law48 sub1-2 × Δ Δ Δ × × √ × Lack Map Support

Law48 sub3-4 × × × × × × × × Vague

Law48 sub5 × × × × × × √ × Lack Map Support

Law49 × × × × × × √ × Lack Map Support

Law50 × × Δ × × × √ √
-

Law51 sub1-2 × × × × × × √ × Lack Map Support

Law51 sub3 × × × × × × √ √
-

Law51 sub4-7 × × × × Δ Δ
√ √

-

Law52 sub1 × × × × × × √ × Lack Map Support

Law52 sub2-4 × Δ × × Δ Δ
√ √

-

Law53 × × √ × Δ Δ
√ √

-

Law57 sub1-2 × × × × × × √ √
-

Law58 × × × × × × √ √
-

Law59 × × × × × × √ √
-

Law62 sub1 × × × × × × √ × Lack Sensors

Law62 sub4 × × × × × × √ × Lack Map Support

Law62 sub8 × × × × Δ × √ × Lack Map Support

Law63 sub1-3 × × × × × × √ × Lack Map Support

Law64 × × × × × × √ × Lack Map Support

Law65 × × × × × × × × Vague

Law78 × Δ Δ Δ
√ × √ × Lack Map Support

Law 79-82 × Δ Δ × × × √ × Lack Map Support

Law84 × × × × Δ × √ × Lack Map Support

Temporal Logic (FTL) [40], for Accountability (FA) [51], and finally,

AVUnit’s own test engine based on global specifications [3].

Table 8 presents the results of our evaluation. Here, D means

whether the framework allows description of the traffic law, and T
means whether the framework can test the specific traffic law with

the support of existing simulators. We observe that LawBreaker
supports most of the relevant traffic laws and outperforms the exist-

ing works in this aspect, largely due to our driver-oriented language

that allow specifications to be scenario-independent. For example,

for traffic lights, AVUnit’s own test engine (based on global specifica-

tions) requires the user to be familiar with the map and to formulate

specifications based on the IDs of every traffic light, the positions of

every vehicle, and so on. Even more problematic is that users have

to write a different specification for every specific scenario since

the map is different. LawBreaker solves this problem by making use

of the driver-oriented signal variable trafficLightAhead, which
makes it independent from the scenarios.

Focusing on LawBreaker, the last column of Table 8 summarises

the reason why LawBreaker is unable to describe or test a given

Chinese traffic law. There are several reasons. First, it may be be-

cause the law is irrelevant to AVs (e.g. they regulate the behaviour

of pedestrians rather than the AVs); we do not list these in the table.

Second, it may be because the law is hard to evaluate or quantify.

For instance, sub4 of Law48 [12], which regulates priority on moun-

tain roads, is rather vague. Third, the law cannot be tested due to

the limitation of existing maps. For example, Law40 and Law41

regulate the behaviour of vehicles when facing traffic lights with

arrow lights cannot be tested, since LGSVL does not support traffic

LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles ASE ’22, October 10–14, 2022, Rochester, MI, USA

lights with arrow lights (this is a limitation of the simulator, rather

than LawBreaker). Finally, some laws cannot be tested due to the

lack of certain sensors. For example, sub1 of Law62 requires that the

doors and compartments must be closed when driving. However,

there is currently no sensor in the ADS for detecting the status of

doors and compartments.

To summarise, LawBreaker is able to specify most of the rele-

vant laws. The main reason why some laws cannot be tested is the

limitation of the underlying simulators, i.e. those laws can be tested

in the future once sufficient map and sensor support are provided.

RQ2: How effective is LawBreaker at generating violations of
laws? To answer this question, we systematically apply our fuzzing

algorithm to test all the testable laws. The results are summarised

in Table 9. Note that there are two different versions of an ADS

driver being tested: Apollo5.0 and Apollo6.0, which are the two latest
versions of ADSs developed on the Apollo platform. The Violations
and Accidents in the table denote whether the driver violates the

traffic law and whether there are accidents due to the violations

of the law. Note that we mark

√
for a traffic law Φ if and only if

accidents happened in the trace 𝜋 and 𝜋 ⊭ Φ. Since ours is the first
work which is capable of generating law-breaking test cases, we

have no baseline to compare with in this experiment.

As can be seen from the table, LawBreaker is able to trigger

violations of most of the laws (sometimes in multiple ways). In sum-

mary, LawBreaker is able to find violations of 14 different Chinese

traffic laws by Baidu Apollo. Among the test cases generated by

our framework, 173 of them not only violate the laws but also cause
accidents. Furthermore, Apollo6.0 violates more traffic laws and re-

sults in more accidents than Apollo5.0. While this is surprising, a

close investigation shows that Apollo6.0 drives more aggressively

than Apollo5.0 since the Apollo6.0 uses a deep learning model, while

Apollo5.0 is completely controlled through a program.

In the following, we categorise the identified issues and present

examples in each category. Video recordings of all the identified

issues are available at [6]. Note that we reran the corresponding

test cases at least 3 times to ensure that all issues are reproducible.

Dangerous behaviours. The AV may break a law and result in

dangerous behaviour. For instance, it might rush at a yellow light

(violating Article #38) and cause accidents. On the other hand, it

might also hesitate at a yellow light and cross the junction at a red

light, i.e. although the AV reaches the stop line when the traffic

light turned from green to yellow and is expected to go across, it

hesitates at the yellow light and crosses the intersection eventually

at the red light. In another instance, the AV may fail to complete

overtaking a large vehicle and cause accidents. In this situation, the

AV is trying to overtake a large turning vehicle (e.g. bus). But the

ego vehicle wrongly estimates the distance to the large vehicle and

accelerates, which causes collisions. The ego vehicle violates both

Article #44 and Article #47 in this situation. Moreover, while the

AV is expected to drive slowly with caution in heavy rain or fog, it

ignores the weather condition and drives at a high speed (violating

sub-rule3 of Article #46). We remark that some of these behaviours

do not result in accidents and thus would be missed by existing

approaches [3, 38]. They are nonetheless behaviours that should

be investigated and corrected.

Table 9: Violations of Chinese traffic laws

Traffic Laws Violations Accidents Content
5.0 6.0 5.0 6.0

Law38

sub1

√ √ × √
green light

sub2

√ √ √ √
yellow light

sub3

√ √ × √
red light

Law44

√ √ √ √
lane change

Law45

sub1 × × × × speed limit

sub2 × × × × speed limit

Law46

sub2 × √ × × speed limit

sub3

√ √ √ √
speed limit

Law47

√ √ √ √
overtake

Law50 × × × × reverse

Law51

sub3 × √ × × traffic light

sub4

√ √ √ √
traffic light

sub5

√ √ × √
traffic light

sub6 × × × × traffic light

sub7 × × × × traffic light

Law52 sub2-4 × × × × priority

Law53 × × × × traffic jam

Law57

sub1

√ √ × × left turn signal

sub2

√ √ × × right turn signal

Law58

√ √ √ √
warning signal

Law59

√ √ √ √
signals

Law62 sub8 × × × × honk

Inefficiency. The AV may break a law and result in inefficient

driving. For instance, it might remain stationary while the traffic

light is green. It might also hesitate at a yellow light—although it is

safe to cross—until the traffic light turns red. Furthermore, it might

fail to overtake a stationary vehicle ahead at an intersection. That

is, there is a static NPC vehicle ahead and the traffic light turns to

green. The AV is expected to overtake the static NPC vehicle to

continue the journey. However, it remains stationary and fails to

overtake (violating Article #38). Lastly, it may fail to make a neces-

sary lane change and never reach the destination. In this situation,

we set a destination that can be reached by a lane change after

crossing the intersection ahead. However, the AV plans an unusual

route, and keeps looping around and never reaches the destination.

RQ3: How efficient is LawBreaker at generating test cases?
Since there is no existing framework to support the evaluation of

traffic laws, we compare our fuzzing algorithm against a fuzzing

algorithm based on random generation. For our fuzzing algorithm,

we set the initial population to 20 and the number of generations to

20, resulting in 420 test cases in one run. For random generation, we

randomly generate 420 tests cases for each run. We run our fuzzing

algorithm and random generation four times to reduce the effect

of randomness, and the results are summarised in Table 10. We

evaluate Apollo6.0 and Apollo5.0 under all the testable traffic laws

shown in Table 9. According to the definition ofΘ(Φ) in Section 4.1,

there are 82 possible violations. We compare our fuzzing algorithm

with random generation in three different scenarios. Overall, we

provide ten AVUnit scenario scripts at [6], and use three of the

scenarios for fuzzing because they are common real-world scenarios

that happen to be associated with complex traffic laws (e.g. vehicle

behaviour at junctions, overtaking).

• S1: In this scenario, there is a T-junction with traffic lights

ahead. There are four NPC vehicles in the scenario. The ego

vehicle is expected to cross the intersection safely.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang

Table 10: Violation coverage of different drivers

Scenario Driver Alg. R1 R2 R3 R4 Avg

Ours 27/82 25/82 21/82 27/82 25
S1 Apollo6.0

Rand 26/82 23/82 15/82 21/82 21.25
Ours 23/82 24/82 26/82 27/82 25

S2 Apollo6.0

Rand 22/82 22/82 15/82 22/82 20.25
Ours 24/82 22/82 25/82 23/82 23.5

S3 Apollo6.0

Rand 15/82 15/82 23/82 22/82 18.75
Ours 27/82 22/82 22/82 23/82 23.5

S1 Apollo5.0

Rand 22/82 21/82 21/82 21/82 21.25
Ours 17/82 16/82 17/82 15/82 16.25

S2 Apollo5.0

Rand 15/82 15/82 14/82 15/82 14.75
Ours 25/82 24/82 24/82 25/82 24.5

S3 Apollo5.0

Rand 25/82 23/82 24/82 23/82 23.75

• S2: In this scenario, there are a few static and low-speed NPC

vehicles ahead, and the ego vehicle is expected to overtake

these static vehicles to reach the destination. There are five

NPC vehicles in the scenario.

• S3: In this scenario, there is an intersection with traffic lights

ahead and the lanes are of two opposite directions. There

are five NPC vehicles in the scenario.

As can be seen from Table 10, our fuzzing algorithm outperforms

random generation with respect to both versions of Apollo, show-

ing its utility for automatic testing. Furthermore, when comparing

driving strategies,Apollo6.0 is more inclined to aggressive ones than

Apollo5.0, leading to more violations of traffic laws for Apollo6.0.
For the four runs of the above three scenarios, we generate 77 sce-

narios that can cause accidents for Apollo5.0 and 96 for Apollo6.0.
As mentioned before, the implementation of deep learning for the

decision process of Apollo6.0 is the main reason for this difference.

Threats to Validity. Due to the nature of simulation-based testing,

there are threats to the validity of the discovered issues. For instance,

some issues may only occur because of the latency between the

simulator and the ADS.

To solve this problem, Apollo itself has some built-inmechanisms

to handle these situations such as the “estop” command to stop the

vehicle. Moreover, we have the following strategies to reduce the

false-positive rate. First, all the found issues are repeated at least

three times to ensure reproducibility. Second, the information we

use for specifications is exactly the same as the ADS gets. In this

way, even when there is a delay which causes the problem, we

do not blame the ADS for it. Third, we make sure the devices for

simulations are in good condition (e.g. well-connected, sufficient

memory). Despite these measures, in general, we cannot rule out

that a discovered problemmay be due to the simulator. Nonetheless,

uncovering such a problem may still be helpful for improving the

system as a whole.

6 RELATEDWORK
Critical Scenario Generation. A scenario for AV testing consists

of static parameters (e.g. time, weather) and dynamic parameters

(e.g. trajectory of vehicles and pedestrians). The main goal of exist-

ing works about AV testing is to generate scenarios that can expose

vulnerabilities of AVs. We divide existing works into two groups:

recreating real-world scenarios, and generating new scenarios.

The first group of works explores how to recreate real-world

scenarios. TNO [49] provides a dataset containing 6000 kilome-

ters of driving on public roads and promotes the development of

scenario-mining algorithms. AC3R [26], and DEEPCRASHTEST [9]

reconstruct car crashes to evaluate ADSs based on the scenario

data from the police reports and accident videos respectively. K-

medoids [48] focuses on recreating scenarios at T-and four-legged

junctions based on the recordings of junction crashes in the UK.

Recreating unsafe cut-ins based on human driver lane change be-

haviour is another way of accelerating the evaluation of AVs [58].

Extracting features of real-world scenarios to evaluate ADSs by

comparing them with human drivers is also a solution [53].

The second group of works explores how to generate critical

scenarios and defines the criticality of the scenario differently. AV-

Fuzzer [38] proposes an autonomousway to generate critical scenar-

ios by fuzzing. The fuzzing algorithm of AVFuzzer is optimised with

respect to (only) the distance from other NPC vehicles, i.e looking

for scenarios that are likely to cause collisions. NADE [24] auto-

matically generates scenarios that are natural and critical at the

same time based on the data collected from a real-world dataset.

The criterion for evaluating whether a scenario is critical or not

in NADE is the distance from other vehicles. Similarly, ‘no colli-

sion’ is also the criteria of Rule-based Searching [42], Evolutionary-

Algorithm-based Generation [32], and CMTS [15]. A few works

explore critical criteria beyond ‘no collision’. Hungar [31], for ex-

ample, defines the criticality of scenarios using a calculation over

several harmful events-related variables. The Baidu group proposes

a coverage-based feedback mechanism [30] that takes the coverage

of the driving area of the map as the criterion, i.e. covering a larger

driving area indicates a better scenario. Hauer and Schmidt [28]

explore how to automatically or manually generate test cases that

cover all categories and model this problem as a Coupon Collec-

tor’s problem. PlanFuzz [57] focuses on overly-conservative ADS

behaviours and checks whether the ego vehicle stops in safe condi-

tions. Mullins defines a ‘near-miss’ by whether or not the scenario

causes the AV to be at the boundary between distinct performance

modes [44, 45]. Althoff and Lutz [8] define the criticality of the

scenario by the size of the passable area, and generate critical sce-

narios by minimising the area. Beglerovic et al. [10] induce a cost

function from the specification of scenarios.

Although existing works propose different methods to generate

scenarios for the evaluation of AVs, they focus on weak oracles and

they lack a set of systematic time-tested oracles for AV testing. In

this work, we evaluated AVs under traffic laws and propose the

LawBreaker fuzzing algorithm to generate ‘critical’ scenarios that

are likely to violate the traffic laws in different ways.

Formalisation of Specifications. Existing works on robotic mo-

tion plan have implemented STL for describing complex oracles,

e.g. [20–22, 27, 33–37, 39, 55]. These works demonstrate the rele-

vance of STL for motion-related specifications. Existing STL-based

AV-related specification languages, e.g. [3, 18, 29, 56], cannot de-

scribe traffic laws. Although AVUnit [3], VERIFAI [18], and Sim-

ATAV [29, 56] propose concrete ways to write specifications for

evaluating ADSs, they do so in a global perspective which is not

suitable for specifying traffic laws in a driver-oriented manner.

LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous Vehicles ASE ’22, October 10–14, 2022, Rochester, MI, USA

Some existing works [11, 13, 19, 40, 51, 52] provide some formali-

sation methods for traffic laws. Rulebook [11, 13] describes traffic

laws by connecting atomic rules. The four formalisation meth-

ods [19, 40, 51, 52] propose different ways to describe traffic laws,

but are limited to specific traffic laws and do not provide a general

driver-oriented style of language. For instance, none of these for-

malisation methods consider a number of important ego vehicle

signals (e.g. high/low beam, left/right turn signal) and traffic sig-

nals (e.g. traffic lights, stop sign). Moreover, their specificationsmust

be customised for different test scenarios, and lack an automatic

method to generate new scenarios as LawBreaker’s optimising

fuzzing algorithm does.

In this paper, we proposed the STL-based LawBreaker to trans-

late traffic laws in a fully decoupled manner, i.e. without any knowl-

edge of the underlying scenario.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed a framework, LawBreaker, for the eval-
uation of AVs with respect to road traffic laws. A key contribution

is its driver-oriented specification language for the description of

traffic laws, which is fully decoupled from and compatible with

different scenario description DSLs. We proposed a fuzzing engine

that searches for different ways of violating the law specifications

by maximising a form of specification coverage, i.e. different ways

of violating the underlying STL formulas.We implemented and eval-

uated LawBreaker for the state-of-the-art Apollo ADS and LGSVL

simulator, and were able to violate 14 Chinese traffic laws, with 173

of the generated test cases causing accidents.

There are several interesting avenues for future work. First, we

are interested in finding more efficient methods to generate test

cases based on the given specification. Furthermore, we only con-

sidered how the ego vehicle should behave in this work, and are

interested in exploring how the traffic flow should be when other

traffic participants are autonomous vehicles as well.

REFERENCES
[1] 2019. Apollo 5.0. https://github.com/ApolloAuto/apollo/releases/tag/v5.0.0. On-

line; accessed August 2022.

[2] 2020. Apollo 6.0. https://github.com/ApolloAuto/apollo/releases/tag/v6.0.0. On-

line; accessed August 2022.

[3] 2021. AVUnit. https://avunit.readthedocs.io/en/latest/. Online; accessed August

2022.

[4] 2022. antlr4. https://github.com/antlr/antlr4. Online; accessed August 2022.

[5] 2022. Autoware.AI. www.autoware.ai/. Online; accessed August 2022.

[6] 2022. LawBreaker: Supplementary Material. https://lawbreaker2022.github.io/.

Online; accessed August 2022.

[7] Matthias Althoff, Markus Koschi, and Stefanie Manzinger. 2017. CommonRoad:

Composable benchmarks for motion planning on roads. In Intelligent Vehicles
Symposium. IEEE, 719–726.

[8] Matthias Althoff and Sebastian Lutz. 2018. Automatic Generation of Safety-

Critical Test Scenarios for Collision Avoidance of Road Vehicles. In Intelligent
Vehicles Symposium. IEEE, 1326–1333.

[9] Sai Krishna Bashetty, Heni Ben Amor, and Georgios Fainekos. 2020. DeepCrashT-

est: Turning Dashcam Videos into Virtual Crash Tests for Automated Driving

Systems. In ICRA. IEEE, 11353–11360.
[10] Halil Beglerovic, Michael Stolz, and Martin Horn. 2017. Testing of autonomous

vehicles using surrogate models and stochastic optimization. In ITSC. IEEE, 1–6.
[11] Andrea Censi, Konstantin Slutsky, TichakornWongpiromsarn, Dmitry S. Yershov,

Scott Pendleton, James Guo Ming Fu, and Emilio Frazzoli. 2019. Liability, Ethics,

and Culture-Aware Behavior Specification using Rulebooks. In ICRA. IEEE, 8536–
8542.

[12] Chinese Government. 2021. Regulations for the Implementation of the Road

Traffic Safety Law of the People’s Republic of China. http://www.gov.cn/gongbao/

content/2004/content_62772.htm. Online; accessed August 2022.

[13] Anne Collin, Artur Bilka, Scott Pendleton, and Radboud J. Duintjer Tebbens. 2020.

Safety of the Intended Driving Behavior Using Rulebooks. In IV. IEEE, 136–143.
[14] JyotirmoyV. Deshmukh, Alexandre Donzé, ShromonaGhosh, Xiaoqing Jin, Garvit

Juniwal, and Sanjit A. Seshia. 2017. Robust online monitoring of signal temporal

logic. Formal Methods Syst. Des. 51, 1 (2017), 5–30.
[15] Wenhao Ding, Mengdi Xu, and Ding Zhao. 2020. CMTS: A Conditional Multiple

Trajectory Synthesizer for Generating Safety-Critical Driving Scenarios. In ICRA.
IEEE, 4314–4321.

[16] Vinayak V Dixit, Sai Chand, and Divya J Nair. 2016. Autonomous vehicles:

disengagements, accidents and reaction times. PLOS ONE 11, 12 (2016), 1–14.

[17] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, AntonioM. López, and Vladlen

Koltun. 2017. CARLA: An Open Urban Driving Simulator. In CoRL (Proceedings
of Machine Learning Research, Vol. 78). PMLR, 1–16.

[18] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravan-

bakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019. VerifAI: A Toolkit

for the Formal Design and Analysis of Artificial Intelligence-Based Systems. In

CAV (1) (LNCS, Vol. 11561). Springer, 432–442.
[19] Klemens Esterle, Luis Gressenbuch, and Alois C. Knoll. 2020. Formalizing Traffic

Rules for Machine Interpretability. In CAVS. IEEE, 1–7.
[20] Georgios E. Fainekos. 2011. Revising temporal logic specifications for motion

planning. In ICRA. IEEE, 40–45.
[21] Georgios E. Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J. Pappas.

2009. Temporal logic motion planning for dynamic robots. Autom. 45, 2 (2009),
343–352.

[22] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. 2005. Temporal

Logic Motion Planning for Mobile Robots. In ICRA. IEEE, 2020–2025.
[23] Francesca M Favarò, Nazanin Nader, Sky O Eurich, Michelle Tripp, and Naresh

Varadaraju. 2017. Examining accident reports involving autonomous vehicles in

California. PLOS ONE 12, 9 (2017), 1–20.

[24] Shuo Feng, Xintao Yan, Haowei Sun, Yiheng Feng, and Henry X Liu. 2021. In-

telligent driving intelligence test for autonomous vehicles with naturalistic and

adversarial environment. Nat. Commun. 12, 1 (2021), 1–14.
[25] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.

Sangiovanni-Vincentelli, and Sanjit A. Seshia. 2019. Scenic: a language for

scenario specification and scene generation. In PLDI. ACM, 63–78.

[26] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating effective test

cases for self-driving cars from police reports. In ESEC/SIGSOFT FSE. ACM, 257–

267.

[27] Meng Guo, Karl Henrik Johansson, and Dimos V. Dimarogonas. 2013. Revising

motion planning under Linear Temporal Logic specifications in partially known

workspaces. In ICRA. IEEE, 5025–5032.
[28] Florian Hauer, Tabea Schmidt, Bernd Holzmüller, and Alexander Pretschner. 2019.

Did We Test All Scenarios for Automated and Autonomous Driving Systems?. In

ITSC. IEEE, 2950–2955.
[29] Mohammad Hekmatnejad, Bardh Hoxha, and Georgios Fainekos. 2020. Search-

based Test-Case Generation by Monitoring Responsibility Safety Rules. In ITSC.
IEEE, 1–8.

[30] Zhisheng Hu, Shengjian Guo, Zhenyu Zhong, and Kang Li. 2021. Coverage-based

Scene Fuzzing for Virtual Autonomous Driving Testing. CoRR abs/2106.00873

(2021).

[31] Hardi Hungar, Frank Köster, and Jens Mazzega. 2017. Test specifications for

highly automated driving functions: Highway pilot. In Vehicle Test & Development
Symposium.

[32] Moritz Klischat and Matthias Althoff. 2019. Generating Critical Test Scenarios

for Automated Vehicles with Evolutionary Algorithms. In IV. IEEE, 2352–2358.
[33] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. 2007. Where’s

Waldo? Sensor-Based Temporal Logic Motion Planning. In ICRA. IEEE, 3116–
3121.

[34] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. 2009. Temporal-

Logic-Based Reactive Mission and Motion Planning. IEEE Trans. Robotics 25, 6
(2009), 1370–1381.

[35] Tanmoy Kundu and Indranil Saha. 2019. Energy-Aware Temporal Logic Motion

Planning for Mobile Robots. In ICRA. IEEE, 8599–8605.
[36] Morteza Lahijanian, Sean B. Andersson, and Calin Belta. 2012. Temporal Logic

Motion Planning and Control With Probabilistic Satisfaction Guarantees. IEEE
Trans. Robotics 28, 2 (2012), 396–409.

[37] Morteza Lahijanian, Joseph Wasniewski, Sean B. Andersson, and Calin Belta.

2010. Motion planning and control from temporal logic specifications with

probabilistic satisfaction guarantees. In ICRA. IEEE, 3227–3232.
[38] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael B. Sullivan, Siva

Kumar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. 2020. AV-

FUZZER: Finding Safety Violations in Autonomous Driving Systems. In ISSRE.
IEEE, 25–36.

[39] Zhiyu Liu, Jin Dai, Bo Wu, and Hai Lin. 2017. Communication-aware motion

planning for multi-agent systems from signal temporal logic specifications. In

ACC. IEEE, 2516–2521.
[40] Sebastian Maierhofer, Anna-Katharina Rettinger, Eva Charlotte Mayer, and

Matthias Althoff. 2020. Formalization of Interstate Traffic Rules in Temporal

https://github.com/ApolloAuto/apollo/releases/tag/v5.0.0
https://github.com/ApolloAuto/apollo/releases/tag/v6.0.0
https://avunit.readthedocs.io/en/latest/
https://github.com/antlr/antlr4
www.autoware.ai/
https://lawbreaker2022.github.io/
http://www.gov.cn/gongbao/content/2004/content_62772.htm
http://www.gov.cn/gongbao/content/2004/content_62772.htm

ASE ’22, October 10–14, 2022, Rochester, MI, USA Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang

Logic. In IV. IEEE, 752–759.
[41] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of

Continuous Signals. In FORMATS/FTRTFT. LNCS, Vol. 3253. Springer, 152–166.
[42] Satoshi Masuda, Hiroaki Nakamura, and Kohichi Kajitani. 2018. Rule-based

searching for collision test cases of autonomous vehicles simulation. IET Intell.
Transp. Syst. 12, 9 (2018), 1088–1095.

[43] Seyedali Mirjalili. 2019. Evolutionary Algorithms and Neural Networks - Theory
and Applications. Studies in Computational Intelligence, Vol. 780. Springer.

[44] Galen E. Mullins, Austin G. Dress, Paul G. Stankiewicz, Jordan D. Appler, and

Satyandra K. Gupta. 2018. Accelerated Testing and Evaluation of Autonomous

Vehicles via Imitation Learning. In ICRA. IEEE, 1–7.
[45] Galen E. Mullins, Paul G. Stankiewicz, and Satyandra K. Gupta. 2017. Auto-

mated generation of diverse and challenging scenarios for test and evaluation of

autonomous vehicles. In ICRA. IEEE, 1443–1450.
[46] Christian Neurohr, Lukas Westhofen, Tabea Henning, Thies de Graaff, Eike

Möhlmann, and Eckard Böde. 2020. Fundamental Considerations around Scenario-

Based Testing for Automated Driving. In IV. IEEE, 121–127.
[47] Dejan Nickovic and Tomoya Yamaguchi. 2020. RTAMT: Online Robustness

Monitors from STL. In ATVA (LNCS, Vol. 12302). Springer, 564–571.
[48] Philippe Nitsche, Pete Thomas, Rainer Stuetz, and Ruth Welsh. 2017. Pre-crash

scenarios at road junctions: A clustering method for car crash data. Accid. Anal.
Prev. 107 (2017), 137–151.

[49] Jan-Pieter Paardekooper, S Montfort, Jeroen Manders, Jorrit Goos, E de Gelder, O

Camp, O Bracquemond, and Gildas Thiolon. 2019. Automatic identification of

critical scenarios in a public dataset of 6000 km of public-road driving. In ESV.
[50] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. 2019. GeoScenario:

An Open DSL for Autonomous Driving Scenario Representation. In IV. IEEE,
287–294.

[51] Albert Rizaldi and Matthias Althoff. 2015. Formalising Traffic Rules for Account-

ability of Autonomous Vehicles. In ITSC. IEEE, 1658–1665.

[52] Albert Rizaldi, Jonas Keinholz, Monika Huber, Jochen Feldle, Fabian Immler,

Matthias Althoff, Eric Hilgendorf, and Tobias Nipkow. 2017. Formalising and

Monitoring Traffic Rules for Autonomous Vehicles in Isabelle/HOL. In IFM (LNCS,
Vol. 10510). Springer, 50–66.

[53] Christian Roesener, Felix Fahrenkrog, Axel Uhlig, and Lutz Eckstein. 2016. A

scenario-based assessment approach for automated driving by using time series

classification of human-driving behaviour. In ITSC. IEEE, 1360–1365.
[54] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke,

Martins Mozeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, Eugene

Agafonov, Tae Hyung Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes,

Dmitry Zelenkovsky, and Seonman Kim. 2020. LGSVL Simulator: A High Fidelity

Simulator for Autonomous Driving. In ITSC. IEEE, 1–6.
[55] Yasser Shoukry, Pierluigi Nuzzo, Ayca Balkan, Indranil Saha, Alberto L.

Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, and Paulo Tabuada.

2017. Linear temporal logic motion planning for teams of underactuated robots

using satisfiability modulo convex programming. In CDC. IEEE, 1132–1137.
[56] Cumhur Erkan Tuncali, Georgios Fainekos, Danil V. Prokhorov, Hisahiro Ito, and

James Kapinski. 2020. Requirements-Driven Test Generation for Autonomous

Vehicles With Machine Learning Components. IEEE Trans. Intell. Veh. 5, 2 (2020),
265–280.

[57] Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and

Qi Alfred Chen. 2022. Too Afraid to Drive: Systematic Discovery of Semantic DoS

Vulnerability in Autonomous Driving Planning under Physical-World Attacks.

CoRR abs/2201.04610 (2022).

[58] Ding Zhao, Henry Lam, Huei Peng, Shan Bao, David J. LeBlanc, Kazutoshi

Nobukawa, and Christopher S. Pan. 2017. Accelerated Evaluation of Automated

Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Tech-

niques. IEEE Trans. Intell. Transp. Syst. 18, 3 (2017), 595–607.

	Abstract
	1 Introduction
	2 Overview of LawBreaker
	3 Specifying Traffic Laws
	3.1 Syntax and Semantics
	3.2 Case Study: Modelling China's Traffic Laws

	4 The LawBreaker Fuzzing Engine
	4.1 Specification Violation Coverage
	4.2 Quantitative Semantics
	4.3 Genetic Encoding for Scenarios
	4.4 Fuzzing Algorithm

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Related Work
	7 conclusion and future work
	References

