

978-1-6654-3579-6/21/$31.00 ©2021 IEEE

Microservices Orchestration vs. Choreography:

A Decision Framework

Alan Megargel

School of Computing and Information

Systems

Singapore Management University

Singapore

alanmegargel@smu.edu.sg

Christopher M. Poskitt

School of Computing and Information

Systems

Singapore Management University

Singapore

cposkitt@smu.edu.sg

Venky Shankararaman

School of Computing and Information

Systems

Singapore Management University

Singapore

venks@smu.edu.sg

Abstract—Microservices-based applications consist of

loosely coupled, independently deployable services that

encapsulate units of functionality. To implement larger

application processes, these microservices must communicate

and collaborate. Typically, this follows one of two patterns: (1)

choreography, in which communication is done via

asynchronous message-passing; or (2) orchestration, in which a

controller is used to synchronously manage the process flow.

Choosing the right pattern requires the resolution of some

trade-offs concerning coupling, chattiness, visibility, and design.

To address this problem, we propose a decision framework for

microservices collaboration patterns that helps solution

architects to crystallize their goals, compare the key factors, and

then choose a pattern using a weighted scoring mechanism. In

cases where there is no clear preference, a hybrid pattern is

suggested which inherits some strengths of both choreography

and orchestration. We demonstrate the framework by

evaluating the needs of three industry case studies (Danske

Bank, LGB Bank, Netflix), showing that it leads to appropriate

patterns being suggested. We are not aware of any existing

decision frameworks to guide solution architects in choosing a

microservices collaboration pattern.

Keywords—microservices, orchestration, choreography,

event-based, invocation-based, service-oriented architecture

I. INTRODUCTION

Microservices constitute an implementation approach to

Service-Oriented Architecture (SOA) principles and patterns,

with emphasis on service development and deployment using

modern software engineering tools and practices [1].

Microservices are characterized as being modular, small in

size, independently deployable, and organized around

business capabilities [2]. These characteristics allow for the

components of complex applications to be independently

monitored, tested, updated, or scaled; benefits that led to the

adoption of microservices by companies such as Amazon,

Netflix, and Uber. Microservices have also been deployed in

more traditional enterprises, such as banking, due to their

effectiveness at integrating or replacing parts of monolithic

legacy systems [3].

Decomposing a complex application into a collection of

microservices also introduces some challenges, most notably,

in determining how they should collaborate in order to

implement different application processes. What might be a

simple language-level function call in a monolith is instead

some network-level communication between services.

Should that communication then be synchronous, e.g. an

HTTP invocation of a RESTful API; or should it be an

asynchronous message exchanged over a publish/subscribe

protocol? Should the individual microservices embed the

‘larger’ application process logic, or should this concern be

separated and managed in a different part of the application?

In practice, microservices typically collaborate according

to one of two different design patterns: choreography or

orchestration [2], [4]. Using choreography, microservices

communicate asynchronously by publishing events via a

message broker; there is no central controller. Microservices

must subscribe and set themselves up for the next iteration of

the application process. Using orchestration, a composite

microservice is introduced to act as a controller,

synchronously invoking other microservices using a

request/reply protocol to manage the steps of the application

process. In orchestration, the microservices do not embed any

knowledge of the application process flow, leaving it solely

as the responsibility of the controller. Choosing the right

collaboration pattern boils down to resolving a series of trade-

offs resulting from their different communication styles.

Microservice choreography leads to solutions with less

coupling and less chattiness, whereas orchestration leads to

solutions with better process flow visibility.

In this article, we address the problem of identifying

which of the microservice collaboration patterns is best suited

to the needs of a given problem or application process. We

propose a decision framework to help identify the goals of the

solution architect, the factors that are most important to them,

and then guide them to an appropriate choice of collaboration

patterns using a weighted scoring mechanism. In cases where

there is no clear preference, a ‘hybrid’ pattern is suggested

which inherits some strengths of both choreography and

orchestration. We demonstrate the framework to evaluate the

needs drawn from three industry case studies—Danske Bank

[5], LGB Bank (anonymized), and Netflix—showing that the

considered factors and scoring mechanisms lead to

appropriate collaboration patterns being suggested. Finally,

we discuss the management implications arising from using

the decision framework.

II. RELATED WORK

In this section, we review related work in the area of

microservices design challenges, and the use of decision

frameworks to guide solution architects in overcoming these

challenges. First, we review the fundamental microservice

design principles. Then we review microservice design

challenges related to service composition and documentation,

followed by a review of the two dominant microservices

collaboration patterns – choreography and orchestration.

Finally, we review related work on architecture decision

frameworks.

A. Microservice Design Principles

In order to achieve the agility and scalability goals of a

microservices-based architecture, the design of each

microservice should be guided by the following fundamental

design principles [3]:

1) Do One Thing Well: “Microservices should be highly

cohesive [6], [7], in that they encapsulate elements (methods

and data) that belong together. A microservice has a specific

responsibility enforced by explicit boundaries. It is the only

source of a function or truth; i.e. the microservice is designed

to be the single place to get, add, or change a ‘thing’, e.g. a

customer, or a product”. Domain-Driven Design (DDD) [8]

has proven to be a good approach for identifying optimal

microservice granularity and bounded context [9].

2) No Bigger than a Squad: “Each microservice is small

enough that it can be built and maintained by a squad (small

team) working independently. A single squad / team should

comfortably own a microservice, whereby the full context of

the microservice is able to be understood by a single person”.

A squad should be no more than 10 people [10].

3) Don’t Share Data Stores: “Only one microservice is to

own its underlying data [6]. This implies moving away from

normalized and centralised shared data stores. Microservices

that need to share data, can do so via API interaction or event-

based interaction”.

4) Independent Release Cadence: “Microservices should

be loosely coupled [7] and therefore should have their own

release cadence and evolve independently. It should always

be possible to deploy a microservice without redeploying any

other microservices. Microservices that must always be

released together could be redesigned and merged into one

microservice”.

Following the above design principles, small-sized,

loosly-coupled, and independently depoyable microservices

are more suitable for cloud deployent as compared to

monoliths [3]. Small-sized deployment objects also makes

containerization (e.g. using Docker) practical, as well as

continuous integration (i.e. scripted build, test, and deploy)

using agile DevOps tools and methods [1]. Cloud-based

microservices are typically exposed to external third parties

as well as to internal user interfaces, via an API Gateway. A

conceptual microservices-based architecture is illustrated in

Fig. 1 below. As an architectural principle, the user interface

should only contain presentation logic, and all of the business

logic and data should reside in the microservices layer [3].

Fig. 1. Conceptual Microservices-based Architecture [3]

B. Microservice Design Challenges

Organizations are increasingly challenged to migrate

from a monolithic application architecture to a microservices-

based architecture [3]. SOA implementations without

microserves have challenges related to monolithic

deployment, and bounded data modeling, along with a

complex protocol stack for implementing solutions. An

Enterprise Service Bus (ESB), an SOA design pattern, does

however provide a centralized view of application process

flows. On the other hand, a microservices-based architecture

provides greater autonomy of services, reduces data structure

dependencies, and provides elastic service scalability through

individual service instantiation. A microservices-based

architecture does however sacrifice the centralized view of

application process flows, which is now distributed across

services [4]. With or without microservices, a common

challenge of SOA implementations is the collaboration of

multiple services to fulfill a ‘larger’ application process [11].

A microservices-based architecture has desirable

characteristics which support continuous integration (i.e. an

automated build, test and deploy of individual microservices)

such as modularity, scalability and separation of concerns

[12]. However, because of the modular and independent

nature of microservices, the visibility of an application

process becomes challenging in terms of process

documentation [13]. For example, one user-triggered request

is no longer processed by a single monolithic system: rather

it is processed by many microservices collaborating together

to fulfil the end-to-end application process. A recent survey

of architects across multiple industries revealed the

challenges of documenting microservices-based applications

to be: a) “documentation is mainly achieved manually”, b)

“documentation is wrong or out-of-date”, c) “documentation

is incomplete”, d) “no appropriate visualization for different

stakeholders”, and e) “tools’ lack of providing runtime Key

Performance Indicators (KPI)” [13].

Microservice containerization and container orchestration

is well defined by the tool providers, e.g. Docker and

Kubernetes. Container orchestration tools simplify the

management of container-based systems using features such

as deployment automation, auto-scaling and self-healing.

Yussupov [12] leverages the classic Enterprise Integration

Patterns (EIP) [14], Pipes and Filters, to propose a “pattern-

based microservices composition meta-model” for designing

container-based applications.

C. Microservices Collaboration

Microservices collaboration can be defined as the action

of a number of microservices working together in order to

satisfy a business need [15]. In a monolithic application, all

the functionalities required for fulfilling the business need are

found within the code segment of a large application, as

illustrated in Fig. 2 below. The business need is satisfied

through the interaction between different functions, which is

achieved through inter-process communication, usually

between the various code segments running on the same

hardware platform (server) using function or language-level

method calls [2].

Fig. 2. Inter-Functional Collaboration in a Monolithic Application

 However, in a microservices-based architecture, an

application is comprised of multiple microservices, each

executing a part of the required functionality, as illustrated in

Fig. 3 below. Rather than language-level method calls as in a

monolith, microservices communicate via standards-based

protocols, e.g. HTTP for invocation-based communication,

or a message-based communication via a message broker.

With each microservice encapsulating a single application

function (business logic), instantiated independently in a

decoupled way, an abstract mechanism is needed to

coordinate the communications between microservices in

order to execute the end-to-end application process.

Fig. 3. Microservices Collaboration

In a microservices-based architecture, the business need

can only be satisfied through collaboration between the

microservices [2]. For example, the business need of an order

fulfilment process for a web-based retailer may require three

microservices to collaborate, namely payment, inventory, and

shipment [15]. The payment microservice is responsible for

ensuring the payment is processed, the inventory

microservice is responsible for reserving the items ordered

and updating the inventory, and the shipment microservice is

responsible for ensuring the items ordered are shipped to the

customer. This collaboration can be designed using two

different architectural patterns; either the choreography

pattern, or the orchestration pattern [3].

D. Decision Frameworks

Decision frameworks provide a way to facilitate and

enhance decision making by assisting the solution architect

in deciding on the technology and architecture of a solution

for a given business requirement [16]. While decision

frameworks vary in design and purpose, they generally

address three common elements which include: a) helping to

identify clear goals, b) illuminating key questions that help

decision participants to scope problems, and c) providing

support to make a final choice having considered the pros and

cons of each option. Scoring mechanisms are typically used

to help compare the options. For example, Griffin [17]

developed a decision framework to assist solution architects

in deciding on the technology best suited to support

decentralized control of a distributed business process.

Goossens [18] has developed a high-level decision

framework for helping organizations make well-supported

software architecture design decisions regarding three

categories, namely communication between microservices,

integration, and management of the microservices. This

framework provides support on how to solve the three

challenges on a conceptual level but does not provide any

support in translating these findings into designing a working

solution. The framework reported in this paper attempts to

focus only on one challenge, namely microservices

collaboration, and provides a method for comparing the

different collaboration patterns and choosing the most

suitable pattern for a given business requirement.

While various authors have compared microservice

collaboration patterns descriptively (e.g. Richardson [2],

Cerny [4], Haj Ali [19]) or experimentally (e.g. Singhal [20],

Rudrabhatla [21]), we are not aware of any existing decision

frameworks to guide solution architects in choosing a

microservice collaboration pattern.

III. MICROSERVICE COLLABORATION PATTERNS

This section covers the microservice collaboration

patterns which are commonly used, as follows:

A. Microservice Choreography Pattern

Using this collaboration pattern, there is no ‘controller’ of

the end-to-end application process flow. Instead,

microservices will publish an event (via a message broker)

whenever there is a state change, whereby other

microservices subscribing to that event then set themselves

up for the next iteration of the process. Fig. 4 below

illustrates an example of microservice choreography, for an

order management application using multiple microservices.

Fig. 4. Example of Microservice Choreography

In the above example, whenever the Customer

microservice changes state, e.g. a customer record is created

or updated, then it publishes an event (message) via a

message broker. The Order microservice subscribes to the

event, because it needs to know the customer’s name; the

Payment microservice subscribes to the event because it

needs to know the customer’s credit card details; the

Shipment microservice subscribes to the event because it

needs to know the customer’s mailing address; and the

notification microservice subscribes to the event because it

needs to know the customer’s email address. For event-based

collaboration to work, all of these microservices need to

know the new customer information before the next order

occurs. Note that there are five copies of the Customer

database, in this example.

Strengths of the choreography pattern include the following

[2], [4], [19]:

• Loosely Coupled

Microservices can be deployed independently. Any active

process data will be queued up in the message broker

during deployment time, so there will be no interruption.

• Low Chattiness

Data is exchanged between microservices only if there is

a state change. This pattern is suitable for microservices

which are deployed across the wide area network.

Weaknesses of the choreography pattern include the

following [2], [4], [19]:

• Poor Process Visibility

End-to-end processes are difficult to monitor, e.g. the

runtime state of a process. Furthermore, point-to-point

connections can lead to ‘spaghetti’ architectures which

are inherently unmanageable. This pattern is less suitable

for complex processes which involve a large number of

microservices.

• Complex Design

Due to the poor visibility of end-to-end processes, and the

need for a message broker to intermediate the process

flow, the design of applications becomes relatively

complex.

• Poor Reusability (Weak Atomicity)

Microservices must maintain copies of databases (or

database tables), other than the one that they own. Weak

atomicity makes microservices less reusable for assembly

into other applications.

• Indeterminate Response Time

If a microservice goes offline temporarily during a

process iteration, the process will eventually complete

when the microservice goes back online. This feature

makes the response time indeterminate, and therefore this

pattern is not suitable if a user interface needs an

immediate response.

B. Microservice Orchestration Pattern

In this collaboration pattern, a composite microservice

acts as the ‘controller’ which orchestrates the end-to-end

application process flow by invoking multiple atomic

services in a sequence. Microservice invocation is done via

request/reply interaction, during the process execution. Fig. 5

below illustrates an example of microservice orchestration,

for the same order management application described above.

Fig. 5. Example of Microservice Orchestration

In the above example, invocation-based request-reply

interaction is used instead of event-based publish-subscribe

interaction. Composite microservices may invoke any other

composite or atomic microservices, in order to orchestrate an

application process. Atomic microservices should never

invoke each other. Atomic microservices have exclusive

access to their own data. Note that there is only one copy of

each database, in this example.

Strengths of the orchestration pattern include the following

[2], [4], [19]:

• Clear Process Visibility

End-to-end processes are easy to monitor, e.g. the runtime

state of a process. This pattern is more suitable for

complex processes which involve a large number of

microservices.

• Simple Design

Due to the clear visibility of end-to-end processes, and

point-to-point style of invocation-based communication,

the design of applications becomes relatively simple.

• High Reusability (Strong Atomicity)

Microservices encapsulate a single entity (object), and

have exclusive access to data that they own. Strong

atomicity makes microservices more reusable for

assembly into other applications.

• Predictable Response Time

Each step in the application process flow uses invocation-

based request-reply interaction. This makes response

times predictable, even for error responses, therefore this

pattern is suitable if a user interface needs an immediate

response.

Weaknesses of the orchestration pattern include the following

[2], [4], [19]:

• Tightly Coupled

Microservices can be deployed independently, but require

downtime during deployment in order to avoid

interruption of the application process flow. This can be

overcome by using an active-active load-balanced

configuration.

• High Chattiness

Data is exchanged between microservices during each

step of the application process flow, therefore this pattern

is not suitable for microservices which are deployed

across the wide area network.

C. Choreography with a Process Engine Pattern

This final collaboration pattern is essentially a hybrid of

the other two, in that it combines the asynchronicity and

flexibility of choreography with the process visibility of

orchestration [22]. Instead of having atomic microservices

subscribing to state changes in each other, a composite

microservice (the ‘controller’) becomes responsible for

ensuring the execution of steps by publishing and subscribing

to events. Fig. 5 below illustrates an example of this hybrid

pattern for the same scenario as described earlier, i.e.

propagating an update of some customer's details.

Fig. 5. Example of Choreography with a Process Engine

In the above example, an invocation-based request-reply

from the UI to the Customer microservice is used to update a

customer’s details. The microservice replies to indicate that

it is processing the update, then publishes an event (message)

via a message broker to indicate its state has changed. The

controller (Propagate Customer Changes) subscribes to this

event, and in turn publishes its own events that are subscribed

to by atomic microservices that need to know about the

changes. The controller has full visibility of the end-to-end

process, and is able to perform any necessary actions once the

process has been completed (or fails), e.g. publishing a push

notification to the web application.

In our example, the controller is implemented as a

composite microservice, but it could alternatively be

implemented using the worklist and queue services of

Conductor, Netflix’s workflow orchestration engine [23].

This ‘hybrid’ pattern inherits some strengths of both

choreography and orchestration. For example, it is loosely

coupled due to the use of brokers, yet it retains process

visibility. However, the chattiness is higher than in pure

choreography, and while the introduction of a controller does

help simplify the design, it also introduces a potential

bottleneck in terms of scalability [24].

IV. DECISION FRAMEWORK

This section describes a framework for deciding which

microservices collaboration pattern to use. The framework

employs a set of six collaboration factors derived from the

previous section, including: a) distribution of microservices

across the wide area network (WAN), impacting ‘chattiness’,

b) predictability of response time from the application

process, c) loose coupling of microservices to the process,

impacting deployment, d) reusability (i.e. atomicity) of

microservices, e) complexity (i.e. number of microservices in

the application process), and f) runtime visibility of the

application process flow.

As a first step, the company’s architecture team, or lead

architect, is meant to assess the general ability of each

microservices collaboration pattern to handle/provide the six

collaboration factors, and then establish this assessment as an

internal Technology Architecture Standard to guide on-going

solution architectures. Here, the lead architect needs to

answer the question, how capable is each collaboration

pattern (choreography and orchestration) in satisfying each of

the six collaboration factors? In terms of ‘Ability’, each

collaboration factor is to be assessed using a five-point Likert

scale; 1-Incabable, 2-Slightly Incapable, 3-Neutral, 4-

Capable, 5-Very Capable. A worked example is provided in

Table 1 below.

TABLE I
ASSESSMENT OF ABILITY (WORKED EXAMPLE)

For each on-going solution, the solution architect together

with business users are meant to assess the priority of each of

the six collaboration factors, in satisfying the business need

of the solution. In terms of business ‘Priority’, each

collaboration factor is to be assessed using a five-point Likert

scale; 1-Not a Priority, 2-Low Priority, 3-Medium Priority, 4-

High Priority, 5-Essential. For each of the six collaboration

factors, the assessed priority is then multiplied by the

assessed ability for each collaboration pattern. The total

score for each collaboration pattern then serves as an

indication to the solution architect as to which collaboration

pattern should be selected for the solution.

 Three worked examples of the framework are provided

in the following subsections. Here, we are demonstrating the

use of the framework on known industry cases. The first case,

Danske Bank, results in choreography as the selected

collaboration pattern. The second case, LGB Bank, results in

orchestration as the selected pattern. The third case, Netflix,

results in no clear pattern preference and recommends a

‘hybrid’ collaboration pattern. Note: we are simply

demonstrating the use of the framework here, and we will

leave a real evaluation of the framework involving industry

partners to future work.

A. Danske Bank Case

Our first case study is the Danske Bank Foreign Exchange

(FX) Core system, a legacy monolithic solution that was

recently re-implemented using microservices [5]. Some key

requirements of the case study included: a) that all

communication should be asynchronous, b) services should

be loosely coupled, c) ability to deploy in private data centers

and eventually private clouds, and d) no explicit requirement

for FX Core microservices to be reused in other applications.

A worked example of the Danske Bank assessment is

shown in Table II below, which indicates that a choreography

collaboration pattern should be selected. This outcome is

predominantly due to the business needs for loose coupling

and distribution across networks: choreography is ‘very

capable’ (5) for both, and they have also been scored as

‘essential’ (5) for Danske Bank owing to requirements ‘b’

and ‘c’ respectively.

TABLE II
DANSKE BANK ASSESSMENT (WORKED EXAMPLE)

B. LGB Bank Case

In the case of Large Global Bank (LGB Bank), based on

a case from a real bank but named anonymously, their

application process involved automating the reselling of third

party travel insurance, initiated via a mobile device.

Constraints of the application process included: a) all

required microservices deployed on a single local area

network, b) immediate response from the application process

sent back to the mobile device (e.g. insurance policy number),

c) active-active load-balanced deployment of microservices,

to ensure no interruption of the process, d) all microservices

designed to be reused by multiple other application processes,

e) a large number of atomic microservices (nine to be exact)

involved in the application process, and f) the application

process must be easily documented.

A worked example of the LGB Bank assessment is shown

in Table III below, which indicates that an orchestration

collaboration pattern should be selected. This outcome is due

to several high priority or essential LGB Bank business needs

that orchestration is ‘very capable’ (5) for. For example,

service reusability was identified as ‘essential’ (5) owing to

constraints ‘d’ and ‘e’. Similarly, predictability of response

time was identified as ‘essential’ (5) owing to constraint ‘b’.

TABLE III
LGB BANK ASSESSMENT (WORKED EXAMPLE)

C. Netflix Case

If the decision framework does not return a clear

preference for choreography or orchestration, then adopting

the ‘hybrid’ pattern – choreography with a process engine –

may be the appropriate choice to make.

Netflix described the challenges of implementing their

business processes in a recent article [25]. Key factors

include: a) a growing number of microservices and increasing

complexity of existing choreographed processes, b) the need

to be able to track and visualize process flows, c) the ability

to support complex workflows that run over multiple days, d)

the need to scale to millions of concurrently running

workflows, and e) the need to be able to force tasks to

synchronously complete.

A worked example in Table IV below returns no clear

preference for choreography or orchestration (e.g. scores

within 10 points), and thus a hybrid approach combining the

key strengths of both is appropriate. In such a case, a ‘hybrid’

pattern - choreography with a process engine – may be

adopted. In the Netflix case, this outcome arises because it

has a mix of high priority business needs that can be capably

supported by choreography or orchestration. For example,

choreography is ‘very capable’ (5) for loose coupling, which

is ‘essential’ (5) for Netflix owing to factors ‘a’ and ‘d’. On

the other hand, orchestration is ‘capable’ (4) for runtime

process visibility, which is ‘high priority’ (4) for Netflix

owing to factor ‘b’.

TABLE IV
NETFLIX ASSESSMENT (WORKED EXAMPLE)

V. MANAGEMENT IMPLICATIONS

The framework proposed in this paper is meant to guide

the solution architect in deciding which microservice

collaboration pattern to use for specific application processes.

However, it is important to note that both collaboration

patterns, as well as the ‘hybrid’ pattern, may be employed

concurrently across a company’s multiple application

processes, on a case-by-case basis, depending on the design

goals of each application.

Generally, the choreography collaboration pattern is

preferred when there are a few microservices involved in the

application process, the microservices are deployed across

the wide area network, and deployment must be done without

interrupting the application process. The downside of

employing this pattern is that there is a cost of maintaining a

message broker, and application processes are difficult to

monitor at runtime due to the event-based nature of the

microservices collaboration. Another downside of using this

pattern is that multiple copies of the same database would

need to be propagated across all of the microservices that use

that data, which would have implications on database

maintenance and storage costs, and would limit reusability of

those microservices to be assembled into new applications.

Generally, the orchestration collaboration pattern is

preferred when there are many microservices involved in the

application process, the microservices are deployed on a

single local area network, and an immediate response is

needed from the application process. The downside of

employing this pattern is that microservices are tightly

coupled to the process controller through invocation-based

communication, and therefore active-active load-balancing is

needed in order not to interrupt the application process during

deployments. One of the main benefits of this pattern, is that

the process is easily visible through documentation, or simply

by looking at the composite microservice (process controller)

code. The other main benefit of this pattern is service

reusability (atomicity), in that: a) microservices stand alone

(are atomic) as they are decoupled for the processing logic,

and b) microservices have clear ownership of their underlying

data, with no need to propagate data redundantly across

multiple other microservices (as with choreography).

The ‘hybrid’ collaboration pattern – choreography with a

process engine – implemented in Netflix’s Conductor [25],

has been shown to add process visibility to the choreography

pattern with a trade-off of increased chattiness [24]. All other

aspects of the choreography pattern remain the same, e.g.

loose coupling. In at least one study, a limitation of Netflix

Conductor was revealed, as it was not able to execute

workflows involving hundreds of tasks [24]. Alternatives to

Netflix Conductor include: Amazon ‘Step Functions’, Uber

‘Cadence’, and Zeebe ‘Zeebe’.

Both of the primary collaboration patterns can claim

‘agility’ as a benefit, although through different means. The

choreography collaboration pattern enables agility because

the reuse of existing microservices is not considered in the

design, due to poor atomicity; meaning agility is not

hampered from having to design for and manage service

reuse. Conversely, the orchestration collaboration pattern

enables agility precisely due to the reuse of existing atomic

microservices. Reuse of software assets is typically an

organizational challenge, rather than a technical challenge. It

is our observation that organizations that are ineffective in

managing software reuse, tend to decide on the choreography

collaboration pattern, regardless of other factors.

VI. CONCLUSION

In this article, we have compared the two main

microservice collaboration patterns – choreography and

orchestration - and have proposed a decision framework to

help solution architects choose appropriate patterns for their

applications. The framework encourages them to identify

their goals in a way that aligns to the key distinguishing

properties of the patterns, then suggests an option based on a

weighted scoring mechanism. Finally, we applied it in three

case studies (Danske Bank, LGB Bank, Netflix), where

contrasting requirements in coupling and reusability led to

different collaboration patterns being suggested. We are not

aware of any existing decision frameworks to guide solution

architects in choosing a microservices collaboration pattern.

We extended our framework to support a ‘hybrid’

collaboration pattern – choreography with process engine –

which combines aspects of both choreography and

orchestration. For example, in Netflix’s Conductor [25],

microservices communicate asynchronously via queues (as in

choreography) but also have a centralized process engine (as

in orchestration). This flexibility would allow for

collaboration patterns where a degree of loose coupling and

runtime process visibility are simultaneously provided [22].

For future work, we intend to test our decision framework

with industry partners who are in the process of migrating

from a legacy monolithic application architecture to a

microservices-based architecture.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their

detailed reviews, which have helped to improve the quality of

this paper.

REFERENCES

[1] O. Zimmermann, “Microservices tenets”, Computer Science-Research
and Development, 32(3), 301-310, 2017.

[2] C. Richardson, “Microservices patterns.” Manning Publications
Company, 2018.

[3] A. Megargel, V. Shankararaman, and D.K. Walker, "Migrating from
Monoliths to Cloud-Based Microservices: A Banking Industry
Example," in Software Engineering in the Era of Cloud Computing:
Springer, pp. 85-108, 2020.

[4] T. Cerny, M.J. Donahoo, and M. Trnka, "Contextual understanding of
microservice architecture: current and future directions," ACM
SIGAPP Applied Computing Review, vol. 17, no. 4, pp. 29-45, 2018.

[5] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S.T. Larsen, and
S. Dustdar, "Microservices: Migration of a Mission Critical System,"
IEEE Transactions on Services Computing, 2018.

[6] F.J. Frey, C. Hentrich, and U. Zdun, "Capability-based service
identification in service-oriented legacy modernization," in
Proceedings of the 18th European Conference on Pattern Languages
of Program, p. 10: ACM, 2015.

[7] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, "Service
cutter: a systematic approach to service decomposition," in European
Conference on Service-Oriented and Cloud Computing, pp. 185-200:
Springer, 2016.

[8] E. Evans, and E.J Evans, “Domain-driven design: tackling complexity
in the heart of software,” Addison-Wesley Professional, 2004.

[9] H. Vural and M. Koyuncu, “Does Domain-Driven Design Lead to
Finding the Optimal Modularity of a Microservice?,” IEEE Access, 9,
32721-32733, 2021.

[10] A. Crawford, “Build a DevOps culture and squads: Building a culture
is at the core of adopting the IBM Garage Methodology,” Available:
https://www.ibm.com/garage/method/practices/culture/practice_buildi
ng_culture/

[11] A.L. Lemos, F. Daniel, and B. Benatallah, "Web service composition:
a survey of techniques and tools," ACM Computing Surveys (CSUR),
vol. 48, no. 3, pp. 1-41, 2015.

[12] V. Yussupov, U. Breitenbücher, C. Krieger, F. Leymann, J. Soldani,
and M Wurster. “Pattern-based Modelling, Integration, and
Deployment of Microservice Architectures,” in 2020 IEEE 24th
International Enterprise Distributed Object Computing Conference
(EDOC) (pp. 40-50), IEEE, 2020.

[13] M. Kleehaus and F. Matthes, “Challenges in Documenting
Microservice-Based IT Landscape: A Survey from an Enterprise
Architecture Management Perspective.”, in 2019 IEEE 23rd
International Enterprise Distributed Object Computing Conference
(EDOC), (pp. 11-20), IEEE, 2019.

[14] G. Hohpe and B. Woolf, “Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions.” Addison-Wesley,
2004.

[15] B. Rücker and M. Schimak, “Know the Flow! Microservices and Event
Choreographies,” 2017. Available:
https://www.infoq.com/articles/microservice-event-choreographies/

[16] N. Upadhyay, "SDMF: Systematic decision-making framework for
evaluation of software architecture," Procedia computer science, vol.
91, pp. 599-608, 2016.

[17] P.R. Griffin, A. Megargel, and V. Shankararaman, "A decision
framework for decentralised control of distributed processes: Is
blockchain the only solution?," In Handbook of Research on
Blockchain Architecture, Strategy, and Business Value. IGI Global,
2019.

[18] B. Goossens, "Decision-Making in a Microservice Architecture,"
University of Twente, 2019.

[19] M. Haj Ali, “Measuring the Modeling Complexity of Microservice
Choreography and Orchestration: The Case of E-commerce
Applications (Doctoral dissertation, Université d'Ottawa/University of
Ottawa)”, 2021

[20] N. Singhal, U. Sakthivel, and P. Raj, "Selection mechanism of micro-
services orchestration vs. choreography," International Journal of Web
& Semantic Technology, vol. 10, no. 1, pp. 1-13, 2019.

[21] C.K. Rudrabhatla, “Comparison of event choreography and
orchestration techniques in microservice architecture. International
Journal of Advanced Computer Science and Applications, 9(8), 18-22,
2018.

[22] L.A. Weir, “Is BPM Dead, Long Live Microservices?,” 2018.
Available: http://www.soa4u.co.uk/2018/02/is-bpm-dead-long-live-
microservices.html

[23] M. Camilli, C. Bellettini, L. Capra, and M. Monga, “A formal
framework for specifying and verifying microservices based process
flows,” in International Conference on Software Engineering and
Formal Methods, (pp. 187-202). Springer, Cham, 2017.

[24] A. Oliveira, “Development of an Orchestration Engine for the DS4NP
Platform,” (Doctoral dissertation, Universidade de Coimbra), 2020.

[25] V. Baraiya and V. Singh, "Netflix Conductor: A microservices
orchestrator,” 2016. Available: https://netflixtechblog.com/netflix-
conductor-a-microservices-orchestrator-2e8d4771bf40

