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ABSTRACT

Programming problems can be solved in a multitude of functionally
correct ways, but the quality of these solutions (e.g. readability,
maintainability) can vary immensely. When code quality is poor,
symptoms emerge in the form of ‘code smells’, which are specific
negative characteristics (e.g. duplicate code) that can be resolved
by applying refactoring patterns. Many undergraduate computing
curricula train students on this software engineering practice, often
doing so via exercises on unfamiliar instructor-provided code. Our
observation, however, is that this makes it harder for novices to
internalise refactoring as part of their own development practices.
In this paper, we propose a new approach to teaching refactoring,
in which students must first complete a programming exercise
constrained to ensure they will produce a code smell. This simple
intervention is based on the idea that learning refactoring is easier
if students are familiar with the code (having built it), that it brings
refactoring closer to their regular development practice, and that
it presents a powerful opportunity to learn from a ‘mistake’. We
designed and conducted a study with 35 novice undergraduates
in which they completed various refactoring exercises alternately
taught using a traditional and our ‘mistake-based’ approach, finding
that students were significantly more effective and confident at
completing exercises using the latter.
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1 INTRODUCTION

Given any reasonably complex programming problem, there will
be a multitude of functionally correct implementations that solve it.
Two solutions that always generate the intended outputs, however,
are not always equally good. Students are exposed to this fact early
when they compare the performance of alternative solutions using
recursion vs. iteration, or quicksort vs. bogosort [13]. Runtime per-
formance, however, is not the only way that two solutions can differ:
their code quality can vary immensely too. ‘Code quality’ encom-
passes non-functional structural properties that arise from good
engineering practices, e.g. readability and maintainability [7, 26]. In
particular, a high-quality codebase is said to exhibit high cohesion
and low coupling [20]: functionally related elements are grouped to-
gether in modules, and those modules are sufficiently independent
such that implementation changes in one should not cause another
to inexplicably break. When these principles are violated, concrete
symptoms can emerge in the form of code smells [28], which are
characteristics (e.g. the presence of duplicate code) that may indi-
cate deeper problems. In order to remove smells and improve code
quality, software engineers apply refactoring patterns that produce
functionally equivalent but ‘odourless’ code [10].

In undergraduate computing curricula, refactoring is typically
introduced in software engineering modules taken after learning the
fundamentals of programming. A traditional delivery of the topic
might teach a few examples of code smells, some corresponding
refactoring patterns, and then challenge the students to apply them
to some functionally correct (but smelly) instructor-provided code.
These exercises can be facilitated in a classroom or as part of an
interactive online tutoring system [19]. While this mode of delivery
has many advantages—the provided code is already working and
simply needs refactoring—our own experiences have suggested that
using instructor-provided code can make it harder for novices to
internalise the concept into their own development practices. This
is because refactoring is introduced as a standalone exercise on
someone else’s code, rather than introducing it as a regular activity
to be undertaken in any project they are developing.

In this paper, we propose a new approach to teaching code refac-
toring that embeds the concept as part of a multi-step exercise.
Students are first tasked to complete a programming exercise that
is designed to ensure they will unwittingly produce smelly (but
functionally correct) code. The goal of this step is not to ‘bait’
students, but to ensure that they are familiar with the code to be
refactored. Following this, they are taught to identify the smell that
is present, and how to refactor it towards an odourless solution.
This simple intervention is based on three key ideas: (1) that learn-
ing refactoring is simpler if students are already familiar with the
targeted code, having written it themselves; (2) that the approach
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aligns and embeds refactoring as part of their own coding practice;
and (3) that ‘mistakes’—in our case, induced code smells—present
effective learning opportunities [6].

To assess the efficacy of this intervention, we conducted a study
with 35 novice undergradate students. We asked them to com-
plete two groups of refactoring exercises for which the code smells
were alternately taught using our ‘mistake-based’ familiarisation
approach or a traditional one. We found that our approach led
to significantly higher code smell identification and refactoring
success rates, suggesting that students are able to apply the con-
cepts more effectively. The results encourage us to further explore
mistake-based teaching approaches in other computing courses,
e.g. improving the learning opportunities in security courses by
demonstrating the presence of security flaws in student code [25].

2 RELATED WORK

In an ITiCSE’17 working group report, Borstler et al. [7] analysed
interviews with 34 students, educators, and developers on their per-
ceptions of code quality. They found that code quality was mostly
understood in terms of indicators such as ‘readability’, which are
measures that code smells would score poorly against. Notably, their
interviewees ranked ‘education’ lowest as the source they used most
for learning about code quality, suggesting that undergraduate pro-
grammes can discuss the topic more thoroughly. Effenberger and
Pelanek [8] buttress this point through their analysis of 114,000
functionally correct solutions in their introductory programming
class, finding most of them to contain quality defects.

Bezerra et al. [4] conducted a study on the perceptions and
challenges of undergraduate students when teaching code qual-
ity through code smell refactoring. They highlighted a number of
benefits, such as an improvement in problem solving and interper-
sonal skills, as well as a number of difficulties such as the fact that
refactoring code can lead to new smells to further refactor. They
also observed that students found it more complicated to refactor
smells when they struggled to interpret the source code—a problem
our approach attempts to address by having students construct the
code first in our familiarisation step.

Various techniques have been proposed for teaching code refac-
toring to undergraduates. For instance, Haendler et al. [16] de-
veloped an interactive web-based tutor in which smelly code is
visualised in UML (‘as-is’) and students are challenged to refactor it
towards a targeted design (‘to-be’). The web-based tutor of Keuning
etal. [18, 19] allows students to request feedback which is generated
based on some predefined rules provided by teachers, e.g. rewrite
steps. In contrast, Haendler and Neumann [15] proposed designing
‘serious games’ for teaching refactoring. Students are presented
with larger real-world code artefacts that are functionally correct
but smelly, and are challenged to refactor them competitively. Izu
et al. [17] provide rules for simplifying conditional statements and
some practice tasks to help students understand how to apply them.
In all these examples, smelly code is provided to students: our ap-
proach differs in that students build the smelly code, and thus can
learn about refactoring using code that they are more familiar with.

Several existing tools can help to automatically identify smells [9]
and assess the quality of code submitted in programming assign-
ments. Hyperstyle [5], for example, integrates code analysis tools
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into online educational platforms to provide feedback on readabil-
ity, complexity, and patterns of repeated mistakes. Prokic et al. [24]
integrate Al-based code quality assessment algorithms to identify
issues as the code is written. Our approach is similar in that we fo-
cus on the code the student is writing, but differs in that we induce
a code smell intentionally to create a learning opportunity.

Many studies have demonstrated the effectiveness of learning
from mistakes. Borasi [6] suggests that mistakes can be capitalised
as a learning opportunity (or as ‘springboards’ for inquiry). Pa-
pert [23] views code debugging as such a learning opportunity, and
our hypothesis is simply that these opportunities can be extended
to mistakes in code quality too. Ginat [11] used erroneous solutions
as a means to teach algorithm design: students would be introduced
to an algorithm containing a common error, and would falsify in-
puts to trigger creative reasoning. Ouh and Irawan [22] propose
an experiential model for teaching software architecture, in which
students undertake activities that simulate practical risks, helping
them to learn how to identify, analyse, and resolve such risks in
their own architectural solutions. Shar et al. [25] demonstrated the
value of security to web development students by introducing them
to security scanners, and using them to uncover exploitable code in
their own projects. Griffin [12] highlights the controversy of inten-
tionally incorporating errors, but argues that cognitive psychology
theories support the idea that intentional errors can promote learn-
ing. Our work differs in that we focus on refactoring, and that
a specific code quality ‘mistake’ is induced in the familiarisation
exercise (rather than provided directly by the instructor).

3 KEY PROBLEMS & RESEARCH QUESTIONS

Our context is Singapore Management University, where code
smells and refactoring have been taught in a software engineering
module taken by all undergraduate Information Systems students.
The delivery of this content has previously been ‘traditional’, in
that students were introduced to some key code smells [10] and
refactoring patterns [1], then were challenged to address the former
using the latter in some simple instructor-crafted exercises.

We observed two key problems in this style of teaching. First,
especially for novice students, using instructor-provided code for
refactoring exercises posed a familiarity barrier (KP1). The issue
we found was that for code beyond the very simplest, some stu-
dents would struggle at the very first hurdle—familiarisation—and
this would distract them from the primary learning objectives con-
cerning smells and refactoring. Second, we observed that students
treated these as isolated exercises and were not gaining the confi-
dence to apply refactoring to their own code (KP2).

Our proposed ‘mistake-based’ intervention is inspired by the
aforementioned works on learning from mistakes [6, 11, 12, 22, 23,
25], as well as Abid et al. [3], who observed benefits from asking
students to ‘enhance’ (add features to) existing code before asking
them to refactor it. In particular, rather than teach refactoring using
instructor-provided code, we propose to first task students with
completing a programming exercise that is designed to induce code
that contains specific smells. The idea is to ensure that students fully
understand the code to be refactored (having written it themselves)
and thus can separate out code familiarisation from code smell
analysis in their learning. Our intention is not to ‘bait’ students: we
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Figure 1: High-level overview of the experiment protocol:
participants are randomly allocated into two flows (A or B),
and apply the two approaches to different code smell groups

see this step as analogous to, for example, a programming exercise
that first solves for specific inputs before guiding students to solve
for all inputs, e.g. by replacing conditionals with a loop.

The overall goal of this paper is to experimentally establish
whether our ‘mistake-based’ approach to teaching refactoring solves
our key problems (KP1, KP2). To guide our experiment design, we
refined our goal to three research questions (RQs):

RQ1: Which method results in a higher success rate for refactoring
exercises?

RQ2: Which method did students prefer and find more effective?

RQ3: How confident are students at being able to identify code
smells in the future?

RQ1 considers whether the introduction of a mistake-based fa-
miliarisation step helps students to complete refactoring exercises,
thus addressing KP1. RQ2 considers the students’ subjective views,
i.e. which of the methods do they prefer and find more effective.
Finally, RQ3 addresses KP2, and considers whether students are
confident that they can apply their refactoring skills in the future.

4 METHODOLOGY

In this section, we describe the experiment design, pre-/post-surveys,
and participants of our study.

4.1 Experiment Design

Figure 1 presents a high-level overview of our experimental pro-
tocol, the detailed steps of which we describe in the following.
(The full set of exercises is also provided in our supplementary
material [2].) First, we defined two groups of code smells (three
smells per group). Group 1 contained Long Method, Long Param-
eter List, and Duplicate Code, whereas Group 2 contained Data
Clumps, Large Class, and Primitive Obsession [10]. These were
selected based on our expertise to ensure a roughly similar balance
of difficulty and technical complexity between the two groups.
For each group, we prepared: (1) a Python programming exercise
with a template designed to induce some smelly code; and (2) the
smelly code the exercise is designed to induce. Each exercise was set
at a novice difficulty, given that the focus of the study was on code
smells and not coding competency. Group 1’s exercise, for example,
involved designing an object-oriented class for a sandwich shop
(including, for example, a method for computing profit). Listing 1
shows a snippet of the provided template (note that Lines 11-17
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1 class Sandwich:

2 def __init__(self):

3 pass

4

5 def calculate_profit(self, name, num_sold, recipe, price):
6 profit = @ # compute this below

7 cost = 0 # add ingredient costs to this

8 discount = 1 # change to 0.8 if num_sold >= 10
9

10 # ENTER YOUR CODE BELOW

11 for ingredient in recipe:

12 cost += ingredient_cost[ingredient]

13 if num_sold >= 10:

14 discount = 0.8

15 price_per_sandwich = price * discount

16 profit_per_sandwich = price_per_sandwich - cost
17 profit = num_sold * profit_per_sandwich

18 # ENTER YOUR CODE ABOVE

19

20 return round(profit, 2)

Listing 1: Coding exercise snippet. Lines 11-17 show an exam-
ple of the ‘smelly’ code (long method) we expect the exercise
to induce, and are blank in the mistake-based approach

are blank in the mistake-based approach; this is the ‘smelly’ code
we expect to induce). The template’s pre-defined methods and
parameter lists are designed to ensure solutions are largely similar
(and in fact, the Long Parameter List code smell is guaranteed).

The study was conducted on a one-to-one basis with a research
assistant: apart from conducting a briefing and pre-study survey
(Section 4.2), the research assistant also provided oral instructions
at all times. Each student was randomly allocated into one of two
flows: A or B. Students in flow A were asked to apply the traditional
approach to the Group 1 smells, followed by the mistake-based
approach to the Group 2 smells. Students in flow B, however, applied
the mistake-based approach to Group 1 and the traditional approach
to Group 2. The specific steps of the approaches are described below.

For the traditional approach, we asked students to watch some
short videos we produced [2] that explain the code smells rele-
vant to the Group using (different) instructor-provided code. Each
video introduces a specific code smell, explains why it occurs, why
it should be refactored, how to refactor it, and then provides an
example using instructor-provided code snippets. This content is
conveyed in under four minutes so that the videos remain bite-sized
and engaging for the participants [14]. Afterwards, the research
assistant provided the students with smelly code for the Group
directly (e.g. Listing 1 including Lines 11-17). In other words, the
participants were asked to refactor instructor-provided smelly code
based on what they learnt from the videos.

For the mistake-based approach, students were first asked to
complete the (smell-inducing) programming exercise for Group 1
or 2 based on the template we provided (e.g. Listing 1 excluding
Lines 11-17). Again, the exercise and template were constrained to
ensure that specific code smells from the given Group would emerge
in the students’ solutions. In the event that a student struggled, the
research assistant would provide hints to guide them towards the
‘smelly’ solution, so as to ensure that the next part of the experiment
would be able to carry on. (We remark that hints were only provided
in this familiarisation step, and not the refactoring exercise, which
was the focus of the experiment.) Following the coding exercise,
the research assistant would provide a brief explanation of the code
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Q1. Do you think your knowledge of code refactoring has improved? (Y/N)

Q2. How familiar are you with the concept of code refactoring? (Likert)

Q3a. How confident are you in identifying code smells from Group 1? (Likert)

Q3b. How confident are you in identifying code smells from Group 2? (Likert)

Q4a. How confident are you in refactoring identified code smells from Group 1? (Likert)
Q4b. How confident are you in refactoring identified code smells from Group 2? (Likert)
Q5a. Do you understand the videos for the traditional method? (Y/N)

Q5b. Did you understand the content covered in the mistake-based approach? (Y/N)

Q6. How effective was the traditional method? (Likert)

Q7. How effective was the mistake-based approach? (Likert)

Q8. Which method did you prefer? (Traditional/Mistake-based/No preference)

Q9. What did you like/dislike about the traditional method? (Open)

Q1@. What did you like/dislike about the mistake-based approach? (Open)

Figure 2: Post-experiment survey (Likert scales are 7-point)

smells relevant to the Group (following the script used in the videos
from the traditional approach), before asking the student to identify
the smells in their own code. For any smells the student failed to
identify, the research assistant would record this before showing
the student what they missed. Finally, the research assistant gave
another a brief oral explanation on the relevant refactoring patterns
(again, following the video script), before asking the student to apply
them where relevant to their own smelly code.

In both approaches, the research assistant recorded the number
of smells identified and resolved by the participants. They did not
provide any help in identifying or resolving the smells until the
participant indicated that they were finished. To earn a point for
code smell identification, they had to name the correct smell and
locate where it was occurring. For unidentified smells, these were
highlighted by the research assistant to the students (with no point
awarded), so that the refactoring part of the experiment could carry
on. To earn a point for resolving a smell, the refactored code had to
remain correct (buggy misconceptions [21] did not count) and the
smell had to be removed to be considered successful. Partial marks
were not given for partial fixes. At the end of the experiment, any
unresolved smells were explained to the students by the research
assistant for the participant’s learning.

4.2 Pre- and Post-Surveys

Prior to the experiment, we used a pre-study survey to collect some
basic demographic information (e.g. gender, year of study), as well
as the pre-university institution they studied at (as some involve
significant practical programming lessons). We also asked them to
rate their proficiency in Python, code smells, and code refactoring
using Likert scales of 1-7 (based on the suggestion of [27]).

After the experiment, participants were asked to complete a post-
study survey (Figure 2) to determine whether they perceived an
improvement in their confidence to identify and resolve code smells.
The final questions involved free text responses to collect some
qualitative assessments from the participants. All Likert scales con-
sisted of 7 points, where 1 indicates least confidence/effectiveness,
4 is neutral, and 7 indicates most confidence/effectiveness.

Ivan Tan and Christopher M. Poskitt

Traditional Method Identified Rates Mistake-based Method Identified Rates

Figure 3: Number of code smells identified (out of 3)

4.3 Participants

We recruited 35 undergraduate Information Systems students from
our institution. Among these students, 30 were in the first or second
year of their Bachelor’s degree, whereas the others were in their
third or final years; 17 reported their gender as female with the
remaining 18 reporting as male. Given that refactoring is only
taught towards the end of their degrees, the vast majority of the
participants can be considered novices in this topic. This was further
confirmed by the pre-study survey, in which the majority of them
rated their familiarity with refactoring as either 1 or 2 (out of 7),
while proficiency in Python varied from 1 to 5 (out of 7), with most
falling in the lower range (1 to 3).

5 RESULTS & ANALYSIS

In this section, we will analyse the results gathered from the exper-
iments in accordance to the research questions defined.

In conducting our analysis, we primarily employed the Wilcoxon
signed-rank test. The test was used as the key point was the differ-
ence between the two methods for each paired measurement (one
participant), so that we could obtain a p-value to interpret against
our null and alternative hypotheses. Whether it was comparing
success rates, confidence, or effectiveness, they were all based on
comparing the two different methods: traditional or mistake-based.

5.1 RQ1: Refactoring Success Rates

For RQ1, we evaluated the success rates for the refactoring exer-
cises, based on the methods that were used to teach the student.
For each participant, four values were collected: (1) number of
code smells identified when taught with the traditional method; (2)
number of code smells refactored when taught with the traditional
method; (3) number of code smells identified when taught with the
mistake-based method; and (4) number of code smells refactored
when taught with the mistake-based method. Wilcoxon signed-
ranked tests were then conducted to compare the means of the
variables: one for identification across the two methods, and one
for refactoring across the two methods. The null hypothesis is that
there is no significant difference in the success rates between the
two methods, with the alternative hypothesis being that there is.
We begin with the code smell identification rate between the
two methods. Students were evaluated against a possible three code
smells to be identified for each method, and only received the point
if they were able to correctly identify what the code smell was and
where it was located. Figure 3 shows a comparison of the code
smell identification success rates between the two methods. We
can see that for the mistake-based method, most students were
able to identify all three code smells, whereas only a few were able
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Figure 4: Number of code smells successfully refactored (out
of a possible 3)

to do so for the traditional method. The average number of code
smells identified for the mistake-based method was 2.93 (out of 3),
whereas it was 1.9 for the traditional method. The median for the
mistake-based method was 3 (out of 3), whereas it was 2 for the
traditional method. The test returned a p-value of 3.2017e-06, and
thus we accept the alternative hypothesis that there is a significant
difference between the identification rates for the two methods.

Next, we look at the refactoring success rates. Similar to identifi-
cation, students were evaluated out of a possible three code smells
to be refactored for each method. They would only get the point
if they were able to refactor the code smell and still maintain the
function’s logic. For refactoring, the average number of code smells
for the mistake-based method was 2.23 (out of 3), whereas it was
1 for the traditional method. The median for the mistake-based
method was 2 (out of 3), whereas it was 1 for the traditional method.
Figure 4 shows that for the mistake-based method, participants
could refactor more code smells in general. The test returned a p-
value of 1.880441e-05, and thus we accept that there is a significant
difference between the refactoring rates for the two methods.

To conclude the statistical analysis for RQ1, we can say that
the mistake-based method was able to generate a higher success
rate for both code smell identification and refactoring. For code
smells learnt with the mistake-based method, students were able to
achieve a higher success rate than those learnt with the traditional
method. We believe that this is because the mistake-based approach
removed the familiarity barrier for the exercises.

5.2 RQ2: Preferred Method

For RQ2, we used the post-study survey to establish which of the
methods the students preferred learning with, and which they per-
ceived to be more effective. First, out of the 35 participants, 34 said
that they preferred the mistake-based method, with the remaining
participant having no preference.

Next, we want to find out which method the students perceived
to be more effective. Using Q6 and Q7 (Figure 2), we were able
to gather quantitative data on a scale of 1-7 for the effectiveness
ratings for both methods. Again, our null hypothesis is that there is
no significant difference between the effectiveness ratings for the
two methods, whereas our alternative hypothesis is that there is.

From the histograms (Figure 5), we can see that the effective-
ness rating for the traditional method is generally on the lower
side, with its peak being a 4 (out of 7). On the other hand, the
mistake-based methods scored better in general. The mistake-based
method was able to get an average of 5.5 (out of 7), whereas the
traditional approach obtained an average of 3.17. The median for
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Figure 5: How effective the students found the traditional
vs. mistake-based approaches (7-point Likert)

Frequency of Identification Confidence Before Frequency of Identification Confidence After
Experiment Experiment

Frequency

1 2 3 a s 6 7 1 2 3 a s 6 7
Confidence Ratings Confidence Ratings

Figure 6: Confidence identifying code smells before and after
the study (7-point Likert)

the mistake-based method was 5.5 (out of 7), whereas the traditional
method obtained a median of 3. With a p-value of 2.188529e-06, we
thus accept the alternative hypothesis that there is a significant
difference between the effectiveness ratings.

For RQ2, it appears that the preferred method in terms of effec-
tiveness was the mistake-based method. Based on our qualitative
feedback from students (Q9 and Q10), we found out that they liked
it more as it was a step-by-step approach, and they could digest the
code as they built it. Highlighting their mistakes was also crucial:
students shared that it helped them understand the concept more.

5.3 RQ3: Confidence at Refactoring

For RQ3, we are interested in two things. Firstly, whether the stu-
dents were more confident in identifying code smells after the
experiment. Secondly, and most importantly, we want to estab-
lish whether they are more confident at identifying/resolving code
smells learnt using the mistake-based or traditional method.

First, we look at the change in students’ confidence before and
after the experiment. Data was obtained using pre- and post-study
survey questions which required students to rate their confidence
on a scale of 1-7. Our null hypothesis was that there is no signifi-
cant difference between the confidence levels before and after the
experiment, with the alternative hypothesis being that there is one.

We can see on the histograms (see Figure 6) that there is a general
increase in confidence after the experiment as compared to before.
The average rating before was 1.6, which increased to an average
of 3.6 after the experiment was conducted. Before the experiment,
the median confidence was 1, and after the test, it increased to 3.5.
The test returned a p-value of 1.597915e-06, allowing us to accept
the alternative hypothesis, concluding that there is a difference
between the confidence levels before and after the experiment.

Next, we want to evaluate whether students are more confi-
dent in identifying smells that they learnt using the mistake-based
method versus those learnt using the traditional method. Similar to
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Figure 7: Confidence identifying code smells learnt using the
traditional vs. mistake-based approach (7-point Likert)

RQ2, we will be using the identification confidence ratings that the
students provided in our surveys. Our null hypothesis is that there
is no significant difference between the confidence levels between
the two methods, with the alternative being that there is.

From the histograms (see Figure 7), we can observe that for the
smells covered by the traditional method, the identification con-
fidence level was lower than for the mistake-based method. The
average identification confidence level was 3.83 (out of 7) for the
mistake-based method, but only 2.63 for the traditional method.
The median for the mistake-based method was 4 (out of 7), whereas
the median for the traditional method was 2. With a p-value of
2.161186e-06, and we thus accept our alternative hypothesis that
there is a significant difference between the identification confi-
dence levels for code smells learnt for each method.

We note an increase in the students’ confidence in identifying
code smells, particularly for those that they learnt using the mistake-
based method. We believe, again, that this is due to removing the
familiarity barrier, allowing them to focus their learning entirely
on refactoring instead of code comprehension.

5.4 Threats to Validity

Finally, we remark on some threats to the validity of our results.
First, the study was limited to undergraduates from a single in-
stitution. It is possible that the results may not generalise due to
differences in curricula, student profiles, and pedagogy.

Second, the exercises were designed around specific groupings
of code smells and refactorings. It is possible that the results will
not apply to refactorings beyond those covered, or to groupings of
smells/refactorings that do not maintain our difficulty balance.

Finally, to strive for objectivity in our evaluation, we used abso-
lute values (0 or 1) to denote whether a student was successful in
identifying or refactoring a certain code smell. This might not be
fully accurate, especially for refactoring, as there could be partially
acceptable answers that we simply counted as 0. For example, credit
was not awarded for being able to correctly identify a code smell’s
location if the participant could not also name it.

6 REFLECTIONS

Some of the participants provided additional feedback at the end
of the study. A participant shared that the mistake-based approach
was very similar to their experience of learning mathematics, where
they would learn certain concepts better after getting the questions
wrong first. Another participant shared that they were inspired by
the mistake-based approach, and would use it in their community
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service project involving teaching coding to secondary school chil-
dren: they joked about asking the students to manually print “Hello
World!” 20 times before introducing for-loops to them. One partic-
ipant also likened the experience to their internship at a startup,
where one of their first code commits went through heavy code
refactoring by their colleague, teaching them a “lesson they would
never forget”. It was encouraging to hear these anecdotes, and it
helped to validate our approach in ways we did not expect.

While this study has conveyed the potential value of a mistake-
based methodology, challenges remain for practitioners to apply
it in a classroom setting. When setting the coding exercises in our
study, we found it difficult to create questions where there was
a balance between right and wrong, with just enough space and
opportunity for a student to commit a smell that we were expecting.
If the question’s design was too narrow, it would have been too
obvious. On the other hand, if the question’s design was too broad,
we would be getting mistakes that are irrelevant to the learning
objectives. Through a lot of iterations and trials, we were able to
achieve a balance for this study, but in terms of using this approach
in the classroom, this would be an important point for educators
to consider. Further research could potentially try to find ways to
automate or use Al in generating these exercises.

7 CONCLUSION & FUTURE WORK

In this paper, we proposed an approach to teaching refactoring that
incorporates a ‘mistake-based’ familiarisation step. In other words,
rather than refactor unfamiliar instructor-provided code, students
complete a programming exercise that leads to smelly (but familiar)
code for them to refactor instead. This simple intervention is based
on the idea that: (1) students will learn refactoring more effectively
if they are already familiar with the targeted code, having built it;
(2) it shows them refactoring isn’t just about fixing other people’s
code, but can be incorporated into their own development practice;
and (3) it aligns with the well-understood notion that ‘mistakes’
provide a strong opportunity for learning. We presented a study
comparing our mistake-based teaching approach with a traditional
one, finding that students were significantly more effective and
confident at completing exercises.

This teaching methodology could potentially be used for other
software engineering courses, and this is something that we are
eager to test as well. For instance, in a basic SQL / database man-
agement course, it might be useful for students to see the wrong
results returned or erroneous merged tables created, allowing them
to understand what was wrong with their query from the mistakes
they made. Similarly, in a web development course, the importance
of securing web applications could be conveyed to students by sub-
jecting their code to various security scanners and highlighting any
vulnerabilities [25].
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