Mitigating Adversarial Attacks on Data-Driven
Invariant Checkers for Cyber-Physical Systems

Rajib Ranjan Maiti, Cheah Huei Yoong, Venkata Reddy Palleti, Arlindo Silva, and Christopher M. Poskitt

Abstract—The use of invariants in developing security mechanisms has become an attractive research area because of their potential
to both prevent attacks and detect attacks in Cyber-Physical Systems (CPS). In general, an invariant is a property that is expressed
using design parameters along with Boolean operators and which always holds in normal operation of a system, in particular, a CPS.
Invariants can be derived by analysing operational data of various design parameters in a running CPS, or by analysing the system’s
requirements/design documents, with both of the approaches demonstrating significant potential to detect and prevent cyber-attacks
on a CPS. While data-driven invariant generation can be fully automated, design-driven invariant generation has a substantial manual
intervention. In this paper, we aim to highlight the shortcomings in data-driven invariants by demonstrating a set of adversarial attacks
on such invariants. We propose a solution strategy to detect such attacks by complementing them with design-driven invariants. We
perform all our experiments on a real water treatment testbed. We shall demonstrate that our approach can significantly reduce false

positives and achieve high accuracy in attack detection on CPSs.

Index Terms—Cyber-physical systems, Data-driven invariants, Design-driven invariants, Axiomatic design, Adversarial attacks.

1 INTRODUCTION

Cyber-Physical Systems (CPS) consist of physical com-
ponents (such as water storage tanks, pumps, and water
flow sensors in a water treatment plant), software compo-
nents (such as control programs running on Programmable
Logic Controllers (PLCs) for coordinating among the physi-
cal components and generating appropriate control signals)
and communication infrastructure (such as routers and
switches for transferring data and control commands be-
tween the physical components and software components).
Because CPSs increasingly utilize public networking infras-
tructure, such as the internet, the attack surface is becoming
larger, and many successful attacks have been documented:
see for example these summaries of incidents from 2010-17
on on critical infrastructure systems, such as power plants,
water dams, and nuclear plants [1], [2], [3].

As a consequence, CPSs have drawn significant attention
from security researchers who aim to develop different
mechanisms that improve the defenses of the system under
consideration. In this paper, we consider the problem of
detecting adversarial attacks on a real CPS, namely the
Secure Water Treatment (SWaT) testbed [4], [5], which forms
our case study. We investigate the efficacy of two different
types of invariant-based anomaly detectors, i) historian log-

e Rajib R. Maiti is with the Department of CSIS, BITS-Pilani, Hyderabad
Campus, India, E-mail: rajib.maiti@gmail.com

o Venkata Reddy Palleti is with the Department of Chemical Engineering,
Indian Institute of Petroleum and Energy, Vizag, India
E-mail: venkat_palleti.che@iipe.ac.in

e Cheah Huei Yoong and Arlindo Silva are with the EPD Pillar, SUTD,
Singapore
E-mail: {cheahhuei_yoong, arlindo_silva}@sutd.edu.sg

o Christopher M. Poskitt is with the School of Computing and Information
Systems, Singapore Management University, Singapore
E-mail: cposkitt@smu.edu.sg

based and ii) system requirements and design-based, in
the presence of adversarial attacks like the ones in [6]. In
brief, an invariant is a property of a system represented in
terms of a Boolean expression, e.g., “water flow rate is high”
and “valve is open”, that always holds true and hence the
violation of which can indicate anomalies.

Motivation. A CPS, for instance, SWaT, is expected to
operate in varying conditions (e.g., processing raw water of
differing quality, or operating with backup pumps), keeping
basic system parameters constant to produce a uniform
quality of purified water from the plant. Any arbitrary sam-
ple of operational data logs from a historian may not capture
a reasonable amount of these conditions and hence a data-
driven invariant checker [7] can have inherent shortcomings
for improving precision and coverage of attack/anomaly
detection. Moreover, operational data-logs may be available
to adversaries. For example, if the historian is compromised,
the attacker can derive substantial knowledge about operat-
ing principles of the plant to be used in designing attacks (as
shown in [6]). Thus, we ask if (1) adversarial attacks are fea-
sible against data-driven invariant checkers, and (2) whether
other types of invariant checkers can mitigate them?

We argue that any sample of historian logs can fail to
capture sufficient variations of distinct operational condi-
tions of a CPS and hence a data-driven invariant checker,
such as [8], can be less effective at detecting certain process
anomalies than those that rely on system requirements or
design, such as [8], [9], [10]. These invariants can be based on
design documents [9], [10] or system requirements [8]. Both
of these techniques make use of design parameters (DPs),
where a DP is a sensor or an actuator in the context of a
CPS. Furthermore, we claim that an invariant crafted out of
an arbitrary set of DPs, which is often the case in design-
driven invariants [9], [10], may miss process anomalies
that are not captured by these sets of DPs. In contrast,
axiomatic design-driven invariants [8] are based on system

requirements. An invariant in such a CPS corresponds to
a low level requirement and hence has a lower probability
of missing out any significant combination of the DPs used
in addressing a requirement of a physical process in a CPS.
Thus, we consider AD-based invariant checker in this paper.

Summary of Contributions. Our main contribution is
in proposing a framework for creating adversarial attacks
on a CPS targeting data-driven invariant checkers. Further
contributions include:

Using our proposed framework, we have designed
five classes of adversarial attacks on data-driven
invariant checkers and used them for investigating
the efficacy of two types of invariant checkers.

We show that the false positive rate of the data-
driven invariant checker in [7] can be more than 60%
with simple adversarial attacks, such as altering the
state of a pair of actuators (e.g., pumps) in SWaT.
We show that the false negative (i.e., actual attacks
reported as normal behaviors) rate can be increased
by up to 20% using relatively more complex adver-
sarial attacks on the same invariant checker.

We have developed nine new invariant checkers us-
ing axiomatic design principles [8], that are capable
of detecting 4 out of 5 types of adversarial attacks
that we have designed in this paper.

We show that the adversarial attacks targeting DPs across
different stages, where the DPs are neither related by func-
tional coupling nor information state coupling, cannot be
detected using axiomatic invariant checkers and hence re-
veal the limitation of this approach.

The rest of the paper is organized as follows. Section 2
summarizes related works. Section 3 briefly describes the
background of our work. Section 4 provides the problem
statement. Section 5 and Section 6 discuss data-driven and
axiomatic design-driven invariants. Section 7 and Section
8 respectively describe adversarial attacks and defenses.
Finally, Section 9 concludes our work in this paper.

2 RELATED WORKS

Advanced attacks on CPSs such as water utilities and
power systems are becoming a growing concern for secu-
rity researchers [1], [2], [3]. Because of the availability of
real world data sets, a wide variety of attacks have been
demonstrated in water purification plants or water distri-
bution systems [11], [12], [13] along with different defense
mechanisms. The majority of the attacks aim to disturb
the physical process so that the quality or the quantity of
treated/distributed water can be compromised. We cate-
gorise the existing defense mechanisms of such CPSs into
four broad types and briefly describe the works therein.
Anomaly detection. Based on historical data, a mathemat-
ical model is built up to characterize the normal behavior
of a CPS. An anomaly detector computes the deviation
between the model generated state and the observed state
to decide any anomaly. The work in [14] uses the operation
states in a power system and computes its deviation from
that of a time-invariant model of the system. Similarly,
the work in [15] considers simulated data sets and real
systems like SWaT and WADI for anomaly detection. The

2

works in [16], [17], [18], [19], [20], [21], [22] have used
neural network based supervised or unsupervised machine
learning models to find a match between the predicted and
observed data logs for anomaly detection. Some works aim
to construct formal models, for example: an event-aware
finite state automata to model the event generation by the
control programs of a CPS [23]; timed automata to learn
the regular behavior of a plant exhibited by sensors; and
Bayesian Networks to learn dependence behavior between
sensor and actuators for anomaly detection [24], [25]. State
estimation in a distributed setup has also been studied to
detect unknown states [26]. The detection of outliers in
operational log files using classical statistical methods [27],
[28], [29], and the discovery of logical correlations or time-
invariant rules among the physical properties have been
proposed to detect attacks on CPSs [30], [31]. A survey [32]
on anomaly detection systems highlights their limitations
with respect to misclassification rates. According to the
survey, the data-driven invariant checkers [7] we consider in
this paper are state estimation based models, whereas our
design-driven invariant checkers [8] are static linear state-
space models. We assess the effectiveness of adversarial
attackers in the presence of such models using data sets from
the SWaT water treatment testbed [4].

Fingerprinting. Based on data/command processing, de-
vice identification is achieved. For instance, the data pro-
cessing and/or response time is used for fingerprinting
the sensors, actuators, or PLCs [33], [34]. The states of
registers present in an ICS controller transferred in control
packets can be used to fingerprint the controller [35], and the
characteristics of buses carrying control packets can identify
a control area network (CAN) in a CPS [36].

Fuzzing. Here, fuzzing aims to derive a set of test cases
for assessing the security of CPSs. For instance, fuzzing
along with machine learning is proposed for identifying
vulnerabilities in CPSs [37], [38]. Manipulation of sensor
readings or actuator states has been proposed for security
testing of CPSs [39].

Invariant mining. These works involve discovering in-
variants from historian logs or system development arti-
facts. For instance, machine learning models can be used
to automate the derivation of invariants from data logs
[40], and data mining approaches, such as association rule
mining and frequent item set generation, can be used for
generating invariants from operational data logs [41], [42].
Furthermore, code mutation in controllers can be used to
create anomalous system behaviors to investigate the ef-
fectiveness of such invariants [43]. Invariant based attack
detection is also used in several types of CPSs beyond
public infrastructure, such as in robotic vehicle control [44].
These techniques, however, risk missing out viable system
behaviors if they are not represented in that data sufficiently.

Nevertheless, the need for manual inspection in cases
of false alarms is unavoidable [45]. Also, design-based in-
variant checkers can be effective in the detection of stealthy
and coordinated attacks [9], [10], [46]. However, both data-
driven and design-driven invariants can suffer from either
lack of sufficient data or lack of effective subsets of DPs [47].
The problem of lack of data is difficult to resolve and hence
yields a possibility of arbitrary adversarial attacks on such
anomaly detectors, e.g., using RNN deception techniques

[48]. In this paper, we use the knowledge of operational
data leading to adversarial attacks on data-driven invariant
checkers and that such attacks can be defended by axiomatic
invariant checkers [8]. We follow a path similar to [6] to
compare these types of anomaly detectors.

3 BACKGROUND
3.1 Invariant

In general, an invariant is a relation, property, state, or
quantity that does not change in any normal operational
condition of a system. In the context of a CPS, an invariant
can indicate that the readings of a sensor follow a certain
distribution no mater how the overall behavior of the CPS is
changing over time, or could indicate that a pair of actuators
are only ever active mutually exclusively. An invariant can
combine one or more DPs (a DP can be as atomic as
a sensor or an actuator, or could be as broad as a sub-
system) whose states remain unchanged irrespective of the
operating conditions of the CPS. A violation of any invariant
can potentially indicate an anomaly in the CPS. However,
the violation itself may not directly identify a specific set of
DPs under attack.

Formally, let D = fdj; dy;::;;dng be the set of n DPs
under consideration. Each DP can assume either a set of
discrete values or a set of continuous values. For instance,
a water pump (P101) is a DP having discrete values as,
“On” or “Off”, whereas a water flow sensor (FIT101) is a
DP having a set of continuous values in a particular range.
Let ¥ = fvi;V; vl g, where V! is the value of d; at time
t. ¥ represents the state of a CPS at t. Two such vectors ¥
and ¥ need not be equal and hence need not represent an
invariant on their own. An invariant using two DPs MV101
and FIT101 can be written as:

((MV 101 = Open) ~ (FIT 101! = 0))
(MV 101 = Close” (FIT 101 = 0))

where MV101 and FIT101 are a valve and a flow sensor
respectively. It indicates that either “((MV 101 = Open) and
(FIT 101! = 0))” or “((MV 101 = Close) and (FIT 101 =
0))” at any timestep t holds true for any normal operation of
a CPS. A violation of it at any t would indicate an anomaly
in the CPS. One can see that creating an exhaustive list of all
possible such Boolean expressions is a complex task.

Formally, let D’ D be the set of DPs for which an
invariant, denoted by 1(DY), be defined. Then,

I(D) =fB1(D”) _Bo(D") _::_By(DY (2

M

where each By (D) is a boolean expression using all the
DPs in D'. Several methodologies have been proposed to
derive invariants of a CPS. In this paper, we discuss two
popular methods, data-driven invariants that utilizes opera-
tional data-logs, and axiomatic design-driven invariants that
utilizes functional specification of CPS.

3.2 SWaT Testbed

The Secure Water Treatment (SWaT) testbed [4], [5] is a
scaled-down version of a modern water purification plant,
intended to support research in cyber-security solutions for
critical infrastructure. SWaT is able to produce up to five

TABLE 1
Data set collected from SWaT.

Data Set #DP #Records Duration Period

(in Days)
I 52 4554 4 December, 2015
I 53 1441719 12 June, 2017
I 61 28801 2 July, 2019
v 78 29992 1 December, 2019
\Y 82 49982 2 June, 2020

gallons of safe drinking water per minute. Figure 1 shows a
schematic view of the six-stage (Stage-1 to Stage-6) testbed,
involving chemical processes such as ultrafiltration (UF),
de-chlorination (UV), and reverse osmosis (RO). In each
stage, a PLC (Programmable Logic Controller) controls the
sensors and actuators through a field-bus network. The
PLCs across stages communicate over Ethernet. A SCADA
workstation connects a human-machine interface to all of
the PLCs, facilitating monitoring and control of the plant
by human operators. Sensor readings and actuator states of
SWaT are recorded by a historian server at a pre-specified
time interval, and a dataset is publicly available [49], [50].

A DP prefixed with “AIT” is a sensor for one water
quality parameter; “FIT” a water flow sensor; “LIT” and
“LS” are water/chemical level sensors in water/chemical
tanks; “MV” a motorized valve; “P” a pump for pumping
out water/chemical from tanks. The number Xyy in the
suffix of each DP indicates a stage number (i.e., X) and an
identifier (i.e., yy) of the component. Any DP prefixed with
AIT, FIT or AIT is a sensor; any DP prefixed with MV or P
is an actuator.

3.3 SWarT Data Set

A total of 75 DPs are present in SWaT. Depending on the
requirements, a subset of 68 of these DPs is chosen for data
collection during an experiment and data sets of several
such experiments conducted from December, 2015 to June,
2020 have been released for research works. Our work
considers five such data sets: a summary is shown in Table
1. In brief, Set I, Set II, Set III, Set IV and Set V have 52, 53,
61, 78 and 82 DPs respectively; the data is available in Excel
files and every record is associated with a time step. Some
of these data sets consider a stage as a feature and hence
contain a maximum of 75 + 6 + 1 = 82 features. However,
we do not consider a stage as a feature in this paper. Feature
or DP names are not uniform across these data sets. We
have unified the names and store them in 5 tables a SQLite
database, one for each data set.

Only Set II has labeled data: labels are either Normal,
indicating that a row does not represent any attack scenario,
or Attack, indicating that a row represents some kind of
attack on one or more DPs in SWaT. We do not use any
of these attacks hence they are not discussed here. A total of
1,536,265 records is present in five data sets.

4 PROBLEM STATEMENT

When invariants are derived by analysing operational data
logs of raw sensor readings and actuator states, we refer to

Rawy Water Intake @ T o o
— [L5201 - [L5202 - LS203
5 FIT101 : Nac L Tank] [TCL Tank] [NaOCT Tank
b (T201) (T202) (T203)
IMVlOlI === } t {
__1__ IP].O]./' 1= = - T 71 | — ___I | ___I
Ptz P201/P2021 1 P203/204] 1 P205/P206
R rteh) L »| Static Mixerl—gi \rvom '
an crritres : ®| Static Mixer f
j«— LIT101 : T T |_MY2P:£|
"""""" ATT201: | D ATT203:
Stage 1: Raw Water Store CFIT201: AIT202: Stage 2: Chemical Dosing
Pl e W ik e [T e e
ater Tan : : : :
 P402" 1 L(TA0T) P AIT302: FIT301 : LIT301 :
T |
: LIT401.; l UF Foed
.......... 1= =--=-= |l————=-=-= ee
: . . - . g—
o o 1 00V302 { Up System P01/ P02 e Waler Fan
LSdon:f | | Ll . I
| P e
: ATT401: 77 ank el : DPIT301: | \ry301 !
"""""" (T402) - AIT303: S LM ey Stage 3: Ultrafiltration
y_ v '
R : [T
Dechlorination] ' - 1" :IVI_V563_:) DE— -,
il —®] Backwash ® P602.
e Tank (T602)| ----
S AIT402 —>
""""""""""" Stage 6: Backwash
I
__________ Siarh | g
{){O . Stage 1
........... Lol Permeate o=~ = :J
. atian | | SRR Tank (T601 P601
Stage 4: Dechlorination Stage 5: Reverse Osmosis (RO) ()| ool

Fig. 1. Six-stage cyber-physical design of SWaT. The thick rectangles are the traditional physical components of the water treatment plant and all
other rectangles are indicate its cyber infrastructure. Thick red arrows indicate water flow directions in the plant. Dotted and dashed rectangles

indicate sensors and actuators respectively.

the outcomes as data-driven invariants. In order to derive ef-
fective data-driven invariants (and corresponding invariant
checkers), the data logs should represent all possible non-
attack behaviors of the CPS. Note that data-driven invariant
checkers can only be developed after the CPS has been built
and run for enough time to produce sufficient data logs.

In contrast, when invariants are derived by analysing
the functional requirements or design documents of a CPS,
we call as design-driven invariants. Those that are derived
specifically by the method described in [8] are referred to as
axiomatic design-driven invariants (detailed in Section 6).
Unlike data-driven, design-driven invariants can be gener-
ated before a CPS is deployed and operational, although they
involve a relatively higher amount of manual effort.

The problem in this paper is to identify the vulnerability
of a data-driven invariant checker by utilizing the knowl-
edge of operational data-logs, hence creating adversarial
attacks. In particular, the aim is to craft a data sample
by minimally altering a sample ¥ of true class X to be
predicted as a target class y (& X) with a high probability.
Furthermore, we aim to explore how far this problem can be
alleviated by complementing data-driven invariant checkers
with design-driven invariant checkers.

" -
v

Operational CPS Adversarial

Attacker

No Alarm

. . Alarm
Historian Data

Center

Data-Driven Invariant Checker Axiomatic-Driven Invariant Checker

Fig. 2. System model for adversarial attack and anomaly detection
systems in an operational CPS.

4.1 System Model

We envision a system (shown in Figure 2) where an opera-
tional CPS is exporting ¥ at a fixed interval to a historian
server over a network. Such records are then used by data-
and design-driven invariant checkers for anomaly detection.

