
1

Mitigating Adversarial Attacks on Data-Driven
Invariant Checkers for Cyber-Physical Systems

Rajib Ranjan Maiti, Cheah Huei Yoong, Venkata Reddy Palleti, Arlindo Silva, and Christopher M. Poskitt

Abstract—The use of invariants in developing security mechanisms has become an attractive research area because of their potential
to both prevent attacks and detect attacks in Cyber-Physical Systems (CPS). In general, an invariant is a property that is expressed
using design parameters along with Boolean operators and which always holds in normal operation of a system, in particular, a CPS.
Invariants can be derived by analysing operational data of various design parameters in a running CPS, or by analysing the system’s
requirements/design documents, with both of the approaches demonstrating significant potential to detect and prevent cyber-attacks
on a CPS. While data-driven invariant generation can be fully automated, design-driven invariant generation has a substantial manual
intervention. In this paper, we aim to highlight the shortcomings in data-driven invariants by demonstrating a set of adversarial attacks
on such invariants. We propose a solution strategy to detect such attacks by complementing them with design-driven invariants. We
perform all our experiments on a real water treatment testbed. We shall demonstrate that our approach can significantly reduce false
positives and achieve high accuracy in attack detection on CPSs.

Index Terms—Cyber-physical systems, Data-driven invariants, Design-driven invariants, Axiomatic design, Adversarial attacks.

✦

1 INTRODUCTION

Cyber-Physical Systems (CPS) consist of physical com-
ponents (such as water storage tanks, pumps, and water
flow sensors in a water treatment plant), software compo-
nents (such as control programs running on Programmable
Logic Controllers (PLCs) for coordinating among the physi-
cal components and generating appropriate control signals)
and communication infrastructure (such as routers and
switches for transferring data and control commands be-
tween the physical components and software components).
Because CPSs increasingly utilize public networking infras-
tructure, such as the internet, the attack surface is becoming
larger, and many successful attacks have been documented:
see for example these summaries of incidents from 2010–17
on on critical infrastructure systems, such as power plants,
water dams, and nuclear plants [1], [2], [3].

As a consequence, CPSs have drawn significant attention
from security researchers who aim to develop different
mechanisms that improve the defenses of the system under
consideration. In this paper, we consider the problem of
detecting adversarial attacks on a real CPS, namely the
Secure Water Treatment (SWaT) testbed [4], [5], which forms
our case study. We investigate the efficacy of two different
types of invariant-based anomaly detectors, i) historian log-

• Rajib R. Maiti is with the Department of CSIS, BITS-Pilani, Hyderabad
Campus, India, E-mail: rajib.maiti@gmail.com

• Venkata Reddy Palleti is with the Department of Chemical Engineering,
Indian Institute of Petroleum and Energy, Vizag, India
E-mail: venkat palleti.che@iipe.ac.in

• Cheah Huei Yoong and Arlindo Silva are with the EPD Pillar, SUTD,
Singapore
E-mail: {cheahhuei yoong, arlindo silva}@sutd.edu.sg

• Christopher M. Poskitt is with the School of Computing and Information
Systems, Singapore Management University, Singapore
E-mail: cposkitt@smu.edu.sg

based and ii) system requirements and design-based, in
the presence of adversarial attacks like the ones in [6]. In
brief, an invariant is a property of a system represented in
terms of a Boolean expression, e.g., “water flow rate is high”
and “valve is open”, that always holds true and hence the
violation of which can indicate anomalies.

Motivation. A CPS, for instance, SWaT, is expected to
operate in varying conditions (e.g., processing raw water of
differing quality, or operating with backup pumps), keeping
basic system parameters constant to produce a uniform
quality of purified water from the plant. Any arbitrary sam-
ple of operational data logs from a historian may not capture
a reasonable amount of these conditions and hence a data-
driven invariant checker [7] can have inherent shortcomings
for improving precision and coverage of attack/anomaly
detection. Moreover, operational data-logs may be available
to adversaries. For example, if the historian is compromised,
the attacker can derive substantial knowledge about operat-
ing principles of the plant to be used in designing attacks (as
shown in [6]). Thus, we ask if (1) adversarial attacks are fea-
sible against data-driven invariant checkers, and (2) whether
other types of invariant checkers can mitigate them?

We argue that any sample of historian logs can fail to
capture sufficient variations of distinct operational condi-
tions of a CPS and hence a data-driven invariant checker,
such as [8], can be less effective at detecting certain process
anomalies than those that rely on system requirements or
design, such as [8], [9], [10]. These invariants can be based on
design documents [9], [10] or system requirements [8]. Both
of these techniques make use of design parameters (DPs),
where a DP is a sensor or an actuator in the context of a
CPS. Furthermore, we claim that an invariant crafted out of
an arbitrary set of DPs, which is often the case in design-
driven invariants [9], [10], may miss process anomalies
that are not captured by these sets of DPs. In contrast,
axiomatic design-driven invariants [8] are based on system

2

requirements. An invariant in such a CPS corresponds to
a low level requirement and hence has a lower probability
of missing out any significant combination of the DPs used
in addressing a requirement of a physical process in a CPS.
Thus, we consider AD-based invariant checker in this paper.

Summary of Contributions. Our main contribution is
in proposing a framework for creating adversarial attacks
on a CPS targeting data-driven invariant checkers. Further
contributions include:

• Using our proposed framework, we have designed
five classes of adversarial attacks on data-driven
invariant checkers and used them for investigating
the efficacy of two types of invariant checkers.

• We show that the false positive rate of the data-
driven invariant checker in [7] can be more than 60%
with simple adversarial attacks, such as altering the
state of a pair of actuators (e.g., pumps) in SWaT.

• We show that the false negative (i.e., actual attacks
reported as normal behaviors) rate can be increased
by up to 20% using relatively more complex adver-
sarial attacks on the same invariant checker.

• We have developed nine new invariant checkers us-
ing axiomatic design principles [8], that are capable
of detecting 4 out of 5 types of adversarial attacks
that we have designed in this paper.

We show that the adversarial attacks targeting DPs across
different stages, where the DPs are neither related by func-
tional coupling nor information state coupling, cannot be
detected using axiomatic invariant checkers and hence re-
veal the limitation of this approach.

The rest of the paper is organized as follows. Section 2
summarizes related works. Section 3 briefly describes the
background of our work. Section 4 provides the problem
statement. Section 5 and Section 6 discuss data-driven and
axiomatic design-driven invariants. Section 7 and Section
8 respectively describe adversarial attacks and defenses.
Finally, Section 9 concludes our work in this paper.

2 RELATED WORKS

Advanced attacks on CPSs such as water utilities and
power systems are becoming a growing concern for secu-
rity researchers [1], [2], [3]. Because of the availability of
real world data sets, a wide variety of attacks have been
demonstrated in water purification plants or water distri-
bution systems [11], [12], [13] along with different defense
mechanisms. The majority of the attacks aim to disturb
the physical process so that the quality or the quantity of
treated/distributed water can be compromised. We cate-
gorise the existing defense mechanisms of such CPSs into
four broad types and briefly describe the works therein.

Anomaly detection. Based on historical data, a mathemat-
ical model is built up to characterize the normal behavior
of a CPS. An anomaly detector computes the deviation
between the model generated state and the observed state
to decide any anomaly. The work in [14] uses the operation
states in a power system and computes its deviation from
that of a time-invariant model of the system. Similarly,
the work in [15] considers simulated data sets and real
systems like SWaT and WADI for anomaly detection. The

works in [16], [17], [18], [19], [20], [21], [22] have used
neural network based supervised or unsupervised machine
learning models to find a match between the predicted and
observed data logs for anomaly detection. Some works aim
to construct formal models, for example: an event-aware
finite state automata to model the event generation by the
control programs of a CPS [23]; timed automata to learn
the regular behavior of a plant exhibited by sensors; and
Bayesian Networks to learn dependence behavior between
sensor and actuators for anomaly detection [24], [25]. State
estimation in a distributed setup has also been studied to
detect unknown states [26]. The detection of outliers in
operational log files using classical statistical methods [27],
[28], [29], and the discovery of logical correlations or time-
invariant rules among the physical properties have been
proposed to detect attacks on CPSs [30], [31]. A survey [32]
on anomaly detection systems highlights their limitations
with respect to misclassification rates. According to the
survey, the data-driven invariant checkers [7] we consider in
this paper are state estimation based models, whereas our
design-driven invariant checkers [8] are static linear state-
space models. We assess the effectiveness of adversarial
attackers in the presence of such models using data sets from
the SWaT water treatment testbed [4].

Fingerprinting. Based on data/command processing, de-
vice identification is achieved. For instance, the data pro-
cessing and/or response time is used for fingerprinting
the sensors, actuators, or PLCs [33], [34]. The states of
registers present in an ICS controller transferred in control
packets can be used to fingerprint the controller [35], and the
characteristics of buses carrying control packets can identify
a control area network (CAN) in a CPS [36].

Fuzzing. Here, fuzzing aims to derive a set of test cases
for assessing the security of CPSs. For instance, fuzzing
along with machine learning is proposed for identifying
vulnerabilities in CPSs [37], [38]. Manipulation of sensor
readings or actuator states has been proposed for security
testing of CPSs [39].

Invariant mining. These works involve discovering in-
variants from historian logs or system development arti-
facts. For instance, machine learning models can be used
to automate the derivation of invariants from data logs
[40], and data mining approaches, such as association rule
mining and frequent item set generation, can be used for
generating invariants from operational data logs [41], [42].
Furthermore, code mutation in controllers can be used to
create anomalous system behaviors to investigate the ef-
fectiveness of such invariants [43]. Invariant based attack
detection is also used in several types of CPSs beyond
public infrastructure, such as in robotic vehicle control [44].
These techniques, however, risk missing out viable system
behaviors if they are not represented in that data sufficiently.

Nevertheless, the need for manual inspection in cases
of false alarms is unavoidable [45]. Also, design-based in-
variant checkers can be effective in the detection of stealthy
and coordinated attacks [9], [10], [46]. However, both data-
driven and design-driven invariants can suffer from either
lack of sufficient data or lack of effective subsets of DPs [47].
The problem of lack of data is difficult to resolve and hence
yields a possibility of arbitrary adversarial attacks on such
anomaly detectors, e.g., using RNN deception techniques

3

[48]. In this paper, we use the knowledge of operational
data leading to adversarial attacks on data-driven invariant
checkers and that such attacks can be defended by axiomatic
invariant checkers [8]. We follow a path similar to [6] to
compare these types of anomaly detectors.

3 BACKGROUND

3.1 Invariant
In general, an invariant is a relation, property, state, or
quantity that does not change in any normal operational
condition of a system. In the context of a CPS, an invariant
can indicate that the readings of a sensor follow a certain
distribution no mater how the overall behavior of the CPS is
changing over time, or could indicate that a pair of actuators
are only ever active mutually exclusively. An invariant can
combine one or more DPs (a DP can be as atomic as
a sensor or an actuator, or could be as broad as a sub-
system) whose states remain unchanged irrespective of the
operating conditions of the CPS. A violation of any invariant
can potentially indicate an anomaly in the CPS. However,
the violation itself may not directly identify a specific set of
DPs under attack.

Formally, let D = {d1, d2, ..., dn} be the set of n DPs
under consideration. Each DP can assume either a set of
discrete values or a set of continuous values. For instance,
a water pump (P101) is a DP having discrete values as,
“On” or “Off”, whereas a water flow sensor (FIT101) is a
DP having a set of continuous values in a particular range.
Let v⃗t = {vt1, vt2, ..., vtn}, where vti is the value of di at time
t. v⃗t represents the state of a CPS at t. Two such vectors v⃗t

and v⃗t
′

need not be equal and hence need not represent an
invariant on their own. An invariant using two DPs MV101
and FIT101 can be written as:

((MV 101 = Open) ∧ (FIT101! = 0)) ∨
(MV 101 = Close ∧ (FIT101 = 0))

(1)

where MV101 and FIT101 are a valve and a flow sensor
respectively. It indicates that either “((MV 101 = Open) and
(FIT101! = 0))” or “((MV 101 = Close) and (FIT101 =
0))” at any timestep t holds true for any normal operation of
a CPS. A violation of it at any t would indicate an anomaly
in the CPS. One can see that creating an exhaustive list of all
possible such Boolean expressions is a complex task.

Formally, let D′ ⊆ D be the set of DPs for which an
invariant, denoted by I(D′), be defined. Then,

I(D′) = {B1(D
′) ∨B2(D

′) ∨ ... ∨Bk(D
′)} (2)

where each Bk(D
′) is a boolean expression using all the

DPs in D′. Several methodologies have been proposed to
derive invariants of a CPS. In this paper, we discuss two
popular methods, data-driven invariants that utilizes opera-
tional data-logs, and axiomatic design-driven invariants that
utilizes functional specification of CPS.

3.2 SWaT Testbed
The Secure Water Treatment (SWaT) testbed [4], [5] is a
scaled-down version of a modern water purification plant,
intended to support research in cyber-security solutions for
critical infrastructure. SWaT is able to produce up to five

TABLE 1
Data set collected from SWaT.

Data Set #DP #Records Duration
(in Days)

Period

I 52 4554 4 December, 2015
II 53 1441719 12 June, 2017
III 61 28801 2 July, 2019
IV 78 29992 1 December, 2019
V 82 49982 2 June, 2020

gallons of safe drinking water per minute. Figure 1 shows a
schematic view of the six-stage (Stage-1 to Stage-6) testbed,
involving chemical processes such as ultrafiltration (UF),
de-chlorination (UV), and reverse osmosis (RO). In each
stage, a PLC (Programmable Logic Controller) controls the
sensors and actuators through a field-bus network. The
PLCs across stages communicate over Ethernet. A SCADA
workstation connects a human-machine interface to all of
the PLCs, facilitating monitoring and control of the plant
by human operators. Sensor readings and actuator states of
SWaT are recorded by a historian server at a pre-specified
time interval, and a dataset is publicly available [49], [50].

A DP prefixed with “AIT” is a sensor for one water
quality parameter; “FIT” a water flow sensor; “LIT” and
“LS” are water/chemical level sensors in water/chemical
tanks; “MV” a motorized valve; “P” a pump for pumping
out water/chemical from tanks. The number xyy in the
suffix of each DP indicates a stage number (i.e., x) and an
identifier (i.e., yy) of the component. Any DP prefixed with
AIT, FIT or AIT is a sensor; any DP prefixed with MV or P
is an actuator.

3.3 SWaT Data Set

A total of 75 DPs are present in SWaT. Depending on the
requirements, a subset of 68 of these DPs is chosen for data
collection during an experiment and data sets of several
such experiments conducted from December, 2015 to June,
2020 have been released for research works. Our work
considers five such data sets: a summary is shown in Table
1. In brief, Set I, Set II, Set III, Set IV and Set V have 52, 53,
61, 78 and 82 DPs respectively; the data is available in Excel
files and every record is associated with a time step. Some
of these data sets consider a stage as a feature and hence
contain a maximum of 75 + 6 + 1 = 82 features. However,
we do not consider a stage as a feature in this paper. Feature
or DP names are not uniform across these data sets. We
have unified the names and store them in 5 tables a SQLite
database, one for each data set.

Only Set II has labeled data: labels are either Normal,
indicating that a row does not represent any attack scenario,
or Attack, indicating that a row represents some kind of
attack on one or more DPs in SWaT. We do not use any
of these attacks hence they are not discussed here. A total of
1,536,265 records is present in five data sets.

4 PROBLEM STATEMENT

When invariants are derived by analysing operational data
logs of raw sensor readings and actuator states, we refer to

4

Raw Water Intake

FIT101

MV101

Raw Water
Tank (T101)

LIT101

P101/
P102

Stage 1: Raw Water Store

Static Mixer

FIT201

P201/P202

Stage 2: Chemical Dosing

MV201

AIT201

AIT202

AIT203

NaCL Tank
(T201)

P203/204

HCL Tank
(T202)

P205/P206

NaOCL Tank
(T203)

UF Feed
Water Tank
(T301)

P301/P302

FIT301

UF System

DPIT301 MV301

MV302

AIT301

AIT302

AIT303 Stage 3: Ultrafiltration

LIT301
RO Feed
Water Tank
(T401)

P401/
P402

FIT401

AIT401

LIT401

UV
Dechlorination

NaHSO3

(T402)

P403/

Static Mixer

AIT402

Tank

FIT501

AIT501

AIT502

AIT503

Filter501 RO
SystemP501/ MV501

MV502

AIT504

FIT502

MV503

P502

Stage 5: Reverse Osmosis (RO)Stage 4: Dechlorination

RO
Permeate
Tank (T601) P601

Back to
Stage 1

UF
Backwash
Tank (T602)

P602

Stage 6: Backwash

P404

LS601

LS602

LS203LS202LS201

LS401

Fig. 1. Six-stage cyber-physical design of SWaT. The thick rectangles are the traditional physical components of the water treatment plant and all
other rectangles are indicate its cyber infrastructure. Thick red arrows indicate water flow directions in the plant. Dotted and dashed rectangles
indicate sensors and actuators respectively.

the outcomes as data-driven invariants. In order to derive ef-
fective data-driven invariants (and corresponding invariant
checkers), the data logs should represent all possible non-
attack behaviors of the CPS. Note that data-driven invariant
checkers can only be developed after the CPS has been built
and run for enough time to produce sufficient data logs.

In contrast, when invariants are derived by analysing
the functional requirements or design documents of a CPS,
we call as design-driven invariants. Those that are derived
specifically by the method described in [8] are referred to as
axiomatic design-driven invariants (detailed in Section 6).
Unlike data-driven, design-driven invariants can be gener-
ated before a CPS is deployed and operational, although they
involve a relatively higher amount of manual effort.

The problem in this paper is to identify the vulnerability
of a data-driven invariant checker by utilizing the knowl-
edge of operational data-logs, hence creating adversarial
attacks. In particular, the aim is to craft a data sample
by minimally altering a sample v⃗t of true class x to be
predicted as a target class y (̸= x) with a high probability.
Furthermore, we aim to explore how far this problem can be
alleviated by complementing data-driven invariant checkers
with design-driven invariant checkers.

Historian Data
Center

Adversarial
Attacker

Operational CPS

Data-Driven Invariant Checker Axiomatic-Driven Invariant Checker

Alarm
No Alarm

Fig. 2. System model for adversarial attack and anomaly detection
systems in an operational CPS.

4.1 System Model

We envision a system (shown in Figure 2) where an opera-
tional CPS is exporting v⃗t at a fixed interval to a historian
server over a network. Such records are then used by data-
and design-driven invariant checkers for anomaly detection.

5

An attacker who compromises the historian system or an in-
sider that exports data to the attacker is capable of launching
adversarial attacks on the CPS.

4.2 Attacker Model
We assume an insider attack where the attacker is honest-
but-curious. The attacker does not aim to exploit any real
system but is interested in investigating the resilience of
the system performance no matter which cyber defense
mechanism is installed in the CPS. The attacker needs no
access to any of the defence mechanisms, however, it has
access to the historian’s data logs.

The attacker has enough computing power to execute
a set of statistical functions on a large set of numerical
data and create synthetic data samples similar to that in
the historian. The attacker does not attempt to break any
cryptographic protocol that may be used to secure CPS
communication.

5 DATA-DRIVEN INVARIANT GENERATION

We consider the data-driven invariant checker proposed
in [42] as a case study in this paper. The set D of the
design parameters (DPs) under consideration is classified
into two groups based on the type of their values: the set
Ds (|Ds| = ns) of sensors and the set Da (|Da| = na) of
actuators, s.t., D = Ds ∪Da. Every actuator dai has a finite
number of discrete states and exactly one of those state is
seen at a particular time step. However, it is not guaranteed
that a data set has to contain all possible states of dai . Each
sensor dsi has a range of real values. Data-driven invariants
are generated in two broad steps: first, predicate generation,
and second, correlated predicates mining.

5.1 Predicate Formation
Intuitively, a predicate in an invariant is the smallest sub-
equation that gets satisfied at a time step. For instance, “an
actuator dai is ON” is a predicate which can be expressed as
dai = ON . Thus, if dai exhibits a set Sa

i = {s1i , s2i , ..., ski } of
k states in a data log then there are k predicates, as dai = s1i ,
dai = s2i , ..., dai = ski .

A relatively complex procedure is followed to form
predicates using sensors. In brief, it is assumed that updates
(an update is the difference in the sensor readings at times
t and t + 1) in the values of a sensor follow some certain
distribution and the task is to estimate the parameters of
these distributions. Specifically, a basic predicate using a
sensor dsi can be stated as “the updates of the values of dsi
is drawn from a normal distribution N (µ, σ2)” and repre-
sented as dsi = N (µ, σ2). It is found that a Gaussian Mixture
Model with c Gaussian distributions fits well with the
updates of a sensor values. So, a predicate of a sensor dsi is
expressed as dsi = GMM(c; (µ1, σ

2
1), (µ2, σ

2
2), ..., (µc, σ

2
c)),

where GMM(...) is a Gaussian Mixture Model with c
Gaussian distributions.

Another set of predicates is derived from the values of
sensors that triggers a change in the state of an actuator.
Let e be an event of changing state from Open to Close of
a MV from time t − 1 to t. The updates of all the sensors
at t is assumed to be correlated. Hence, a linear regression

TABLE 2
A sample of a data log.

Time FIT101 LIT101 MV101 P101
3 2.653548 260.9131 1 2
4 3.668338 260.285 2 2
5 3.654815 259.8925 2 1
6 3.675456 258.0495 2 1

TABLE 3
A sample of predicates.

Time FIT101
N1

FIT101
N2

LIT101
N3

LIT101
N4

MV101
Open

MV101
Close

P101
On

P101
Off

1 0 1 1 0 1 0 0 1
2 0 1 1 0 1 0 0 1
3 0 1 1 0 1 0 0 1

model is fit for every single sensor update with the updates
of all other sensors at t. Formally, let the reading of a sensor
dsi at time step t be xs

i,t and Rs
i (e) be the set of sensors

that are related (defined mathematically in [42]) to an event
e. Then, for every sensor reading at t, two predicates are
defined: (i) xs

i,t < f1(ϵ, α0, α1, α2, ..., αr) and (ii) xs
i,t >

f2(ϵ, α0, α1, α2, ..., αr), where f1(...) and f2(...) are both
linear functions of coefficients α1, α2, ..., αr, threshold ϵ, and
constant α0; all these parameters are derived from the linear
regression model. Note that the number of coefficients used
in f1(...) and f2(...) need not be the same across different
sensors even at a same time step and the coefficient count for
a predicate on a sensor dsi depends on the number of sensors
in Rs

i (e), i.e., |Rs
i (e)|. Table 2 and Table 3 respectively

show a small sample of actual data logs using a limited
number of DPs and the corresponding predicates for a better
comprehension of the output of the complete process.

5.2 Invariant Mining

Invariant generation is carried out using association rule
mining techniques where the predicate table is taken as
input. In brief, an invariant is a co-occurrence of two or more
predicates at a certain time step. Two thresholds are derived
for every meaningful invariant: minimum fraction threshold
(γ) ranging in (0, 1) and minimum support threshold (θ)
ranging in (0, γ). Both γ and θ together define another
threshold indicating the number of occurrences of an in-
variant. A set P = {p1, p2, ..., pq} of predicates can be
considered as an invariant if:

F(P) > max(γmin(F (p1), F (p2), .., F (pq)), θ)

where F (x) indicates the frequency of x in the predicate
database. The thresholds γ and θ are chosen judiciously such
that a set of predicates that occurs by chance can be avoided
from being chosen as an invariant. Also, these thresholds
significantly depend on the data set and the set of predicates
under consideration.

Similar to the classical problem of market basket analy-
sis, a subset of predicates P is considered to be an invariant
if all the predicates in P have occurred together at least a
minimum number of times in the predicate database such
that no other P ′ ⊂ P satisfies F (P) = F (P ′), where
F (x) is frequency of x in the predicate database. Among

6

others, Conditional Frequent Pattern-growth (CFPgrowth)
and CFPgrowth++ algorithms fit well into the problem be-
cause of relatively smaller search space. The CFPGrowth++
algorithm has been selected because of the provision of
applying several pruning steps to further reduce the search
space. Once the set P of candidate invariants is found, it
is divided into two non-empty sets P1 and P2 such that
P1∪P2 = P and F (P1)

F (P2)
= 1. Hence, an invariant is generated

as P1 → P2 from P .

6 AXIOMATIC DESIGN BASED INVARANTS

This section describes how design-driven invariants can be
derived using the axiomatic design inspired approach of [8].

6.1 Axiomatic Design Principles

Axiomatic Design (AD) principles are used to transform
customer requirements (called CAs) to design parameters
(DPs) and process variables (PVs) through functional re-
quirements (FRs) in order to control coupling and cohesion
among the DPs. AD principles heavily rely on decomposi-
tion and mapping. Each of the high level FRs is systemati-
cally decomposed and mapped to a finer set of DPs by using
a so-called design matrix D. Typically, an entry ai,k ∈ D
represents a function or a method or a data structure in
the software being developed and it indicates a binding
between a FR and a DP. If there is no function that binds a
FR, FRi and a DP, DPk then the entry ai,k = 0 in the matrix
D. In an ideal design, the matrix D is a diagonal matrix
which represents a fully uncoupled design: such a design
matrix is used in the first level of mapping between FRs
and DPs. This principle was used to systematically derive
invariants in CPSs for the first time in [8].

In general, a FR in software engineering is an indepen-
dent requirement derived from CAs, that is available in un-
structured text and/or graph format and often incomplete.
In SWaT, “supply water to water tanks” can be a FR in the
first level and this FR can be satisfied using digital pumps
which is a DP in the first level. The PV corresponding to
this DP is the set of all possible states of the pumps. Though
there are several water tanks in different stages of SWaT and
each can have different operating logic, e.g., a constraint on
the maximum or minimum amount of water required in the
tanks, we consider that the supply of water to water tanks
as a FR in the first level of design. A complete set of FRs and
the corresponding DPs in SWaT are shown in Table 4.

Unlike traditional AD principles, the matrix D used in
the derivation of invariants is not a diagonal matrix, as it
incorporates “information state coupling” introduced in [8].
In brief, to address the requirement of controlling water
flow a motorized valve is functionally coupled with a flow
meter, whereas a pump pushing water through the flow
meter has information state coupling with the FR. Such
a design matrix at the first level is shown in Equation 3
(simplified from paper [8] for better comprehension) which
is used for SWaT. The diagonal elements (shown as bold-
faced 1s) indicate the first level direct mapping between the
FRs and the DPs (same as in traditional AD approaches).
The other entries are added at this level of design to indicate
information state coupling with other DPs for a given FR.



FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8


=



1 1 1 1 0 1 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 0 0 1 1 0 0 0
0 0 0 1 1 0 0 1
1 0 0 0 0 1 1 0
1 1 1 0 0 1 1 0
0 0 0 0 1 0 0 1





DP1
DP2
DP3
DP4
DP5
DP6
DP7
DP8


(3)

For instance, FR1 is related to five other DPs (DP2, DP3,
DP4, DP6 and DP7) due to information state coupling,
along with DP1 that is related due to functional coupling.

6.2 Deriving Invariants using a Design Matrix
To derive an invariant, we need to decompose a high level
FR to several lower level FRs; we call a FR as an atomic FR if
it can be satisfied with a minimal subset of DPs along with
their PVs. The matrix D can help in linking the DPs, dk,
with a FR, FRi, using the equation

FRi =

n∑
k=1

ak ∗ dk, where ai ∈ {0, 1} is an entry in D

For instance, decomposing FR1 to a lower level, a singular
FR can be “supply water to water tank T101 in stage-1 if its
water level is low” which can be satisfied using MV101 and
LIT101, along with their specific PVs. A precise mapping
between FRs and DPs along with their PVs is obtained
by repeated refinement of a high level design matrix by
applying system building knowledge of a design engineer.
Finally, by applying the knowledge of process logic, we can
find two constraints MV 101 = Open ∧ LIT101 = Low
and MV 101 = Close ∧ LIT101! = Low to feed wa-
ter to T101. At any time step, the Boolean expression
(((MV 101 = Open) ∧ (LIT101 = Low) ∨ ((MV 101 =
Close) ∧ (LIT101! = Low))) is satisfied under normal op-
eration and hence the expression is deemed as an invariant.

7 FORMATION OF ADVERSARIAL ATTACKS

This section describes a methodology to launch adversarial
attacks on data-driven invariant checkers. In a targeted
adversarial attack, the attacker feeds adversarial examples
so that a true class X of the examples gets predicted as a
target class Y and hence defeat a trained model M . In a
non-targeted adversarial attack, the aim is to cause M to
classify the data as a class other than its true class X . We
prepare both targeted and non-targeted adversarial attacks.

7.1 Framework for Adversarial Attack
We introduce a simple yet effective framework, in Figure
3, describing the process for generating adversarial data
logs. Note that adversarial attacks on data-driven invariant
checkers highly depend on the knowledge that can be
derived from the historian data logs of a CPS. First, an
attacker estimates the statistical properties of the DPs from
the log samples. This step can help to categorise the DPs,
e.g., chemical sensors, or motorised valves.

7

TABLE 4
Top-level FRs and corresponding DPs with their respective PVs in SWaT.

Functional Requirements (FRs) Design Parameters (DPs) Process Variables (PVs)
FR1: Supply water to water tanks/systems DP1: DOL/VSD Pumps Switch On/Off and Speed
FR2: Measure amount of water in water tanks DP2: Water level sensors Value range
FR3: Track flow rate of water DP3: EMF sensors Value range
FR4: Monitor chemical properties of water DP4: Chemical property sensors Value range
FR5: Inject chemicals to water DP5: Dosing Pumps Switch (On/Off)
FR6: Track water pressure DP6: Pressure sensors Value range
FR7: Direct flow of water DP7: Motorised valves Switch (On/Off)
FR8: Measure amount of chemicals in chemical tanks DP8: Level switch Value range

2. Data
Curbing

3. Identify
Target DP

4. Feed
adverse data

5. Update
Data Log

1. Inspect statistical
properties of data-driven

anomaly detector

6. Verify Performance of
data-driven anomaly

detector

Fig. 3. Process to create adversarial attacks on data-driven invariants.

Second, the attacker investigates and discovers the basis
of data-driven invariants, e.g., the rate of change of sensor
readings or possible missing states of each actuator. Third,
attacker identifies a small set of nad potential DPs (s.t.,
nad << |D|) that has some missing combinations of values
compared to that of other similar set of DPs . The output of
this step is a limited number of (DP,value(s)) pairs to form
adversarial data, e.g., (P101 = On) and (P102 = Off).
Fourth, the attacker seeks an appropriate time window in
the actual data log to inject the crafted values identified in
the third step. We consider this step as horizontal crafting
of adversarial data as it can affect only a limited number
of rows, instead of an entire column. For instance, a time
window when the UF System in Stage-3 is back-washed
using UF Backwash system in Stage-6, and during this time
window, both P301 and P302 will be switched Off. Fifth, the
attacker then plugs the complete rows along with the other
rows in the original data log. This step is important because
the attacker has to avoid sudden change in the values of
|D − nad| DPs. Also, if a range of values, e.g., in case of
a chemical sensor, needs to be injected into the data log
then an appropriate distribution of the data across several
timesteps needs to be generated and hence we call this as
vertical crafting of adversarial records. Finally, the attacker
tests the impact of the adversarial attack by selecting a set of
metrics before attacking the actual plant. We use the miss-
classification rate and false alarm rate for such tests.

7.2 Evaluation Metrics

We consider two well known metrics of false alarms: false
negatives and false positives. Let N t

a and N t
n be the number

of true attack and true non-attack samples respectively.
Assume that a data-driven invariant checker has resulted in
a confusion matrix N11, N22 of correctly predicted attacks
and non-attacks, and N21, N12 incorrectly predicted non-
attacks and attack samples. Thus, the false negative rate

(FNR) = N21

N21+N11
, and false positive rate (FPR) = N12

N12+N22
.

False negative and false positive rates together indicate the
misclassification rate (MCR) = N21+N12

Nt
a+Nt

n
. Finally, false alarms

rate (FAR) = N12

N12+N11
indicates the fraction of alarms due to

normal operations of CPS.
An attacker is interested in the change of false alarm

rate and misclassification rate due to adversarial attacks. In
particular, the change in the actual attacks due to adversarial
data and the corresponding change in the false alarms
rate, i.e., Impact = FARddi−FARadvr

Nt
a−Na

a
, where FARddi and

FARadvr indicate the false alarms rate of the data-driven
invariant checker and the false alarm rate of the adversarially
attacked data-driven invariant checker. Finally, Na

a is the
actual number of attacks after adversarial data injection.

7.3 Identify Target Actuators

Because each state of an actuator forms a predicate (refer to
Section 5), we show in Figure 4 the distribution of states of
each of the actuators in SWaT, aggregated from all data sets
denoting non-attack operating conditions.

In Stage-1, datasets indicate that MV101 has two states
(Open (S3) and Close (S2); the state S1 is an intermediate
state that arises due to state change) and both the Pumps
P101 and P102 have two states (On (S2) and Off (S1)), i.e.,
each actuator exhibits all possible states. In Stage-2, MV201
shows all two states, whereas the Pumps do not exhibit all
possible states. Only three (P201, P203 and P205) out of 8
pumps in this stage have state S2, i.e., On, and all other
remain Off all through out and can become a simple choice
of target for adversarial attack. In Stage-3, each of four MVs
and two pumps have all the possible states. In Stage-4, one
(P404) out of 4 pumps has never been ON. All possible states
of UV401 can be observed in the data set. In Stage-5, all MVs
have changed their states, but one (P502) out of 2 pumps has
never been switched ON. Finally, in Stage-6, one (P603) out
of 3 pumps has never been ON. Every actuator that does
not changing state can be a choice of target for attack.

Inspecting deeper in each data set separately, we have
noticed that some actuators are not activated. For instance,
pump P102 has not been used in 4 out of 5 data sets. Simi-
larly, pumps P202, P204, P206, P208, P302, P402, P404, P502
and P603 have not been activated in more than one data set.
In fact, some of data sets do not consider these pumps for
data collections. Similarly, both MV502 and MV503 are not
switched On in data set IV and, these valves are not present
in three data sets, possibly because these are insignificant in
certain operations of the plant.

8

S1 S2 S3

10 2

10 1

100
Pr

(S
)

Stage-1: MV
MV101

S1 S2

10 3

10 1

Pr
(S

)

Stage-1: Pumps

P101
P102

S1 S2 S3

10 2

10 1

100

Pr
(S

)

Stage-2: MV
MV201

S1 S2

10 1

100

Pr
(S

)

Stage-2: Pumps
P201
P202
P203
P204
P205
P206
P207
P208

(A) (B) (C) (D)

S1 S2 S3

10 2

10 1

100

Pr
(S

)

Stage-3: MVs
MV301
MV302
MV303
MV304

S1 S2

10 1

100
Pr

(S
)

Stage-3: Pumps

P301
P302

S1 S2
10 2

10 1

100

Pr
(S

)

Stage-4: Pumps

P401
P402
P403
P404

S1 S2

10 1

100

Pr
(S

)

Stage-4: UV
UV401

(E) (F) (G) (H)

S1 S2 S3

10 3

10 2

10 1

100

Pr
(S

)

Stage-5: MVs
MV501
MV502
MV503
MV504

S1 S2

10 1

100

Pr
(S

)

Stage-5: Pumps

P501
P502

S1 S2
10 2

10 1

100

Pr
(S

)

Stage-6: Pumps
P601
P602
P603

(I) (J) (K)
Fig. 4. Distribution of the states in each of the actuators. Pr(x) indicates the probability of observing a state x, i.e, Pr(x) = nx

n
,

where n and nx are the total number of data points and the number of data points having state x of an actuator respectively.

In summary, we have found enough evidence to identify
a number of actuators that can be utilized to generate
adversarial attacks. Note that an arbitrary change of state
of any of these DPs need not invade an anomaly detection
system built-up based on data-driven invariants. Only an
appropriate combination of these DPs along with other DPs
can lead to an attack, which will completely depend on the
functionalities of each of these DPs in the CPS.

7.4 Identify Target Sensors

In the case of sensors, we inspect the distribution of values.
Our aim is not to identify an accurate set of parameters
of a specific distribution fitting the sensor values, rather
we aim to identify a set of sensors as target of adversarial
attacks. We aggregate the values from all the data sets for
each sensor and bucketize them suitably. For instance, we
create buckets of size 25 value ranges from 0 to higher than
500, and a bucket size of 0.5 where the range is from 0 to
less than 10. Then, we find the probability of each of such
buckets for a given sensor. Mostly, the number of sensor
readings is 1,481,646 and the number of buckets varies from
1 to 45 depending on the range of sensor readings and the
bucket size. Figure 5 shows the results of sensors, i.e., FITs,
LITs, AITs and PITs, in all the stages.

In Stage-1, FIT101 varies in [0.0,4.7] indicating water flow
to tank T101 is sometimes 0 and the rate can reach to 4.7.
LIT101 varies in [120, 1000], which potentially indicates that
the capacity of the tank T101 is at least 1000 units. Logically,

if the water level in T101 is below 120 units and FIT101
= 0, or the level above 1000 units and FIT101 = 4.7, then
an anomaly should be triggered by an anomaly detector.
LIT301 in Stage-3 and LIT401 in Stage-4 indicate different
ranges of values; LIT301 in [132, 1201] and LIT401 in [130,
1007]. An attacker can make use of differences in the ranges
to prepare attack data in combination with other DPs. The
buckets of 100 in both LIT301 and LIT401 are empty even
though the ranges seem valid, when compared with LIT101.
Similarly, the buckets of 1000 and higher in both LIT101 and
LIT401 can be used for attacks.

Unlike LITs, the ranges of AIT301 or AIT201 are not
directly comparable as they measure different properties of
water at different stages. The knowledge of basic properties of
water can help to decide normal ranges of values. For instance,
pH in natural water varies in [6.5, 8.5] and hence one can
say that AIT202, AIT301 and AIT501 are the pH sensors;
AIT201 in [6.0, 9.7], AIT301 in [6.7, 8.9] and AIT501 in [6.9,
8.3]. Therefore, the buckets of 6.0, 8.5 and 9.0 in pH sensors
can be used to prepare attack data. Similarly, the sensors
for other properties like dissolved oxygen and oxidation
reduction potential can be used in attack formation.

7.5 Generate Adversarial Data Logs
Adversarial data represents both anomalous or non-
anomalous states of a CPS and a data-driven invariant
checker should detect them appropriately. We aim to craft
adversarial data by manipulating existing data logs as we
target only a small set of DPs.

9

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

10 4

10 3

10 2

10 1

100

Pr
(S

)
Stage-1: FIT

FIT101

75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

62
5

65
0

67
5

70
0

72
5

75
0

77
5

80
0

82
5

85
0

87
5

90
0

92
5

95
0

97
5

10
00

10
25

10 4

10 2

100

Pr
(S

)

Stage-1: LIT
LIT101

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

10 4

10 3

10 2

10 1

100

Pr
(S

)

Stage-2: FIT
FIT201

(A) (B) (C)

0.
0

25
.0

50
.0

75
.0

10
0.

0
12

5.
0

15
0.

0
17

5.
0

20
0.

0
22

5.
0

25
0.

0
27

5.
0

30
0.

0
32

5.
0

35
0.

0
37

5.
0

40
0.

0

10 3

10 2

10 1

100

Pr
(S

)

Stage-3: AIT
AIT301
AIT302
AIT303

0.
0

25
.0

50
.0

75
.0

10
0.

0
12

5.
0

15
0.

0
17

5.
0

20
0.

0
22

5.
0

25
0.

0
27

5.
0

30
0.

0
32

5.
0

35
0.

0
37

5.
0

40
0.

0
42

5.
0

45
0.

0
47

5.
0

50
0.

0
52

5.
0

55
0.

0
57

5.
0

60
0.

0
62

5.
0

65
0.

0
67

5.
0

70
0.

0
72

5.
0

75
0.

0
77

5.
0

80
0.

0
82

5.
0

85
0.

0
87

5.
0

90
0.

0
92

5.
0

95
0.

0
97

5.
0

10
00

.0
10

25
.0

10 5

10 3

10 1

Pr
(S

)

Stage-2: AIT
AIT201
AIT202
AIT203

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

10 4

10 2

100

Pr
(S

)

Stage-3: FIT
FIT301

(D) (E) (F)

0.
0

25
.0

50
.0

75
.0

10
0.

0
12

5.
0

15
0.

0
17

5.
0

20
0.

0
22

5.
0

25
0.

0
27

5.
0

30
0.

0
32

5.
0

35
0.

0
37

5.
0

40
0.

0

10 5

10 3

10 1

Pr
(S

)

Stage-4: AIT
AIT401
AIT402

75
.0

10
0.

0
12

5.
0

15
0.

0
17

5.
0

20
0.

0
22

5.
0

25
0.

0
27

5.
0

30
0.

0
32

5.
0

35
0.

0
37

5.
0

40
0.

0
42

5.
0

45
0.

0
47

5.
0

50
0.

0
52

5.
0

55
0.

0
57

5.
0

60
0.

0
62

5.
0

65
0.

0
67

5.
0

70
0.

0
72

5.
0

75
0.

0
77

5.
0

80
0.

0
82

5.
0

85
0.

0
87

5.
0

90
0.

0
92

5.
0

95
0.

0
97

5.
0

10
00

.0
10

25
.0

10
50

.0
10

75
.0

11
00

.0
11

25
.0

11
50

.0
11

75
.0

12
00

.0
12

25
.0

10 4

10 3

10 2

10 1

100

Pr
(S

)

Stage-3: LIT
LIT301

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

10 1

100

Pr
(S

)

Stage-4: FIT
FIT401

(G) (H) (I)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

10 3

10 2

10 1

100

Pr
(S

)

Stage-5: FIT
FIT501
FIT502
FIT503
FIT504

75
.0

10
0.

0
12

5.
0

15
0.

0
17

5.
0

20
0.

0
22

5.
0

25
0.

0
27

5.
0

30
0.

0
32

5.
0

35
0.

0
37

5.
0

40
0.

0
42

5.
0

45
0.

0
47

5.
0

50
0.

0
52

5.
0

55
0.

0
57

5.
0

60
0.

0
62

5.
0

65
0.

0
67

5.
0

70
0.

0
72

5.
0

75
0.

0
77

5.
0

80
0.

0
82

5.
0

85
0.

0
87

5.
0

90
0.

0
92

5.
0

95
0.

0
97

5.
0

10
00

.0
10

25
.0

10
50

.0
10

75
.0

11
00

.0
11

25
.0

11
50

.0
11

75
.0

12
00

.0
12

25
.0

10 3

10 2

10 1

100

Pr
(S

)

Stage-4: LIT
LIT401

(J) (K)

0.
0

25
.0

50
.0

75
.0

10
0.

0

12
5.

0

15
0.

0

17
5.

0

20
0.

0

22
5.

0

25
0.

0

10 4

10 2

100

Pr
(S

)

Stage-5: PIT

PIT501
PIT502
PIT503

0.
0

25
.0

50
.0

75
.0

10
0.

0
12

5.
0

15
0.

0
17

5.
0

20
0.

0
22

5.
0

25
0.

0
27

5.
0

30
0.

0
32

5.
0

35
0.

0
37

5.
0

40
0.

0
42

5.
0

45
0.

0
47

5.
0

50
0.

0
52

5.
0

55
0.

0
57

5.
0

60
0.

0
62

5.
0

65
0.

0
67

5.
0

70
0.

0
72

5.
0

75
0.

0
77

5.
0

80
0.

0
82

5.
0

85
0.

0
87

5.
0

90
0.

0
92

5.
0

95
0.

0
97

5.
0

10
00

.0
10

25
.0

10 6

10 4

10 2

100

Pr
(S

)

Stage-5: AIT
AIT501
AIT502
AIT503
AIT504

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

10 3

10 2

10 1

100

Pr
(S

)

Stage-6: FIT
FIT601

(L) (M) (N)

Fig. 5. Distribution of the values of each of the sensors. Pr(R) is the probability of observing a range R of values, i.e., Pr(R) = nR
n

,
where n and nR are the total number of data points and the number of data points with a value in range R of a sensor respectively.

7.5.1 Adversarial Attack on Actuator in One Stage
We consider any pair of pumps that coordinates closely,
possibly one being backup for the other, to perform a same
function, e.g., {P101, P102}, {P201,P202}, and {P403,P404}.
For instance, P101 and P102 can be ON alternately, but not at
the same time, to represent a valid non-attack state of SWaT.

7.5.2 Adversarial Attack on Actuator in Multiple Stages
Our analysis shows that P602 in Stage-6 has strong coupling
with MV301 in Stage-3 to perform the task of washing UF

system whenever required. Working principles indicate that
these two DPs can be used to create adversarial data logs
for both non-attack and attack scenarios. A non-attack state
is generated by putting P602 = On & MV 301 = Open,
whereas an attack state can be generated with P602 = On &
MV 301 = Close. However, it is important to maintain these
state combinations for appropriate time periods in order to
be stealthy. An anomaly state can be created if such a period
is about 10 time steps.

10

7.5.3 Adversarial Attack on Sensor in One Stage
Our inspection on the range of values of LIT101 and LIT301
reveal that these two LITs are used for monitoring water
level in water tanks in two stages. Our knowledge about
normal operating principles indicates that the tanks at dif-
ferent stages are of the same capacity and water level in
any of the tanks can show the same range of waters levels.
Figure 5B and Figure 5H show that the lowest limit of
LIT101 and LIT301 are 100 and 125 respectively and both
show maximum limits of 875 and 1100 respectively (except
for some outlier values). We make use of this observation
to create adversarial data log wherein we create a set of
synthetic values to equalize the ranges of both the DPs.

Let δmin = |min(LIT101) − min(LIT301)| and
min(LIT101) < min(LIT301), where min(x) indicate the
lowest limit of x. To create additional values of LIT301,
we follow a normal distribution with µ = µ(LIT301) and
σ = σ(LIT301), where µ(LIT301) and σ(LIT301) are the
mean and standard deviation of δt(x) = {(xt − xt+1)}, x
is a DP, and (xt − xt+1) indicates the change of values in x
from time t to next time step t + 1 observed in the data log
of LIT301. Two ranges of values are created, each of these is
equal to δmin; one half used to bring down the minimum of
LIT301 to equalize with LIT101 and the other half to bring it
up to the minimum of LIT301. Note that these extra values
of LIT301 represent non-attack cases and we validated this
argument with the plant engineer.

7.5.4 Adversarial Attack on Multiple Sensors in One Stage
We identify a correlation between LIT301 and FIT301 in
Stage-3, where a reduction of water level in T301 indicates
a non-zero flow rate. We create a mismatch in the range
of change in the water level in T301 and the flow rate.
Following a similar process as in Section 7.5.3, we create a
series of 1000 values in [992, 692] for LIT301 and a series of
values in [1.44, 2.44] for FIT301. All these records are labeled
as ”Attacks” because i) the correlation of rate of change of
values in LIT301 and FIT301 is different compared to that
observed in the real plant, and ii) impact of water flow is
not adjusted in Stage-4 or in the remaining parts of Stage-3.

7.5.5 Adversarial Attack on Sensor and Actuator in Multiple
Stages
Our deep inspection shows that AIT402 at Stage-4 measures
one of the water quality parameters and based on this sensor
certain chemical dosing is done to maintain the quality of
water at this stage. The range of the values of AIT402 is seen
to be {0, 325} (refer to Figure 5G). Normal data log shows
that AIT402 can report a fixed value when both water flows
are constant. We correlate this observation with that of the
status of pumps P301 and P302 that push water from Stage-
3 to T404 tank in stage 4 (refer to Figure 1). The process logic
indicates that once sufficient water is pushed to T401 from
Stage-3, the variation in AIT402 is limited compared to that
when fresh water is fed again to the tank from Stage-3. We
have utilized this logic to create the attack.

We create a sequence of about 600 readings for AIT402
that starts from 149 to 301 and back to 149 again following a
procedure similar as in Section 7.5.3. This sequence of values
are injected into the records after both pumps P301 and P302

TABLE 5
Impact of adversarial attack on the checker in [42]. TN, FP, FN and TP

indicate true negatives, false positives, false negatives and true
positives respectively. Acc., Prec., FS indicate accuracy, precision and

F-score resp.

Attack#
(im-
pact)

Base
Case
(–)

Sec.
7.5.1
(all)

Sec.
7.5.2
(306)

Sec.
7.5.3
(1000)

Sec.
7.5.4
(1001)

Sec
7.5.5
(601)

Target
DPs

– P101,
P102

MV301,
P602

LIT101,
LIT301

LIT301,
FIT301

AIT402,
P301/2

TN 55829 321 55525 54842 53841 53240
FP 58 55566 56 58 58 58
FN 1918 0 2221 2905 3893 4490
TP 32178 34096 32181 32178 32191 32195
Acc. 0.978 0.382 0.975 0.967 0.956 0.949
FPR 0.001 0.994 0.001 0.001 0.001 0.001
FNR 0.056 0 0.065 0.083 0.108 0.122
Prec,. 0.998 0.380 0.998 0.998 0.998 0.998
Recall 0.944 1.0 0.935 0.917 0.892 0.878
FS 0.970 0.551 0.966 0.956 0.942 0.934

become Off from a state where either one of the two are On
and labeled them as ”attack”.

7.6 Impact on Data Driven Invariants
We consider a base data log file of SWaT that has a total
of about 89k records including 55,887 and 34,096 non-attack
and attack records respectively. The second column in Ta-
ble 5 shows the performance of the data-driven invariant
checker in [42] using this log file. The following rows in the
table shows the impact of adversarial attacks in Section 7.5.

The attack in Section 7.5.1 has adverse impact on accu-
racy where it reduced to 38% from 97% in the base case. Both
of the attacks in Section 7.5.1 and Section 7.5.2 have most
impact on recall, indicating that the invariant checker fails
to cover all the attacks. Both the attacks in Section 7.5.4 and
Section 7.5.5 have most impact on both FNR and recall. In
summary, the data-driven invariant checker suffers from 1
FN or FP every 100 data points which takes about 9 minutes
if data points are generated every 5 seconds, i.e., 12 records
per minute, in the least possible case of the attacks. Essen-
tially, the checker can suffer from 7 FN or FP every hour in
a operational plant, like SWaT. Moreover, simple alteration
of pumps in SWaT can create a substantial amount of FPs
(>94%) if data logs do represent the simple operational logic
of this types of DPs. Alternately, the amount operational
data can be irrelevant to ensure expected performance of a
data-driven invariant checker.

8 DEFENDING AGAINST ADVERSARIAL ATTACKS

In this section, we consider the axiomatic design-driven
invariant checkers of [8] as a defense against adversarial at-
tacks. We claim that almost all the adversarial attacks can be
detected by this type of invariant checker. In this paper for
the first time, we consider a reverse engineering approach
for developing AD-based invariant checkers which will aim
to detect anomalies in a specific set of DPs.

8.1 AD Invariant Checker
8.1.1 Detection of Attack on Actuators in One Stage
This attack targets two pumps P101 and P102 in Stage-
1. We consider the FRs that functionally couple these two

11

DPs, rather than those FRs that considers them as related
due to information state coupling. FR1.1, i.e., “pump raw
water from stage-1 to UF feed tank in stage-3”, considers
DP2.1 (LIT101), DP2.2 (LIT301) and DP7.1 (MV201) due to
information state coupling. The notation “xxp.q” indicates
that “xx” is a design element (either FR or DP) and “p.q”
is the level and sub-level numbers of decomposition. Thus,
DP1.2 indicates a set of DPs in the second level decompo-
sition of DP1; similarly, DP1.2.3 is a set of DPs in a third
level decomposition of DP1 or a next level decomposition
of DP1.2. Using the knowledge of a plant engineer about
the process logic of FR1.1, we derive the following normal
operating conditions that helps in deriving the invariant:

• If LIT301 indicates low water level in tank T301,
then PLC301 in Stage-3 signals to PLC201 in Stage-
2, which then Opens MV201 and informs PLC101
to start the pumps. PLC101 then switches On either
P101 or P102 if water level indicated by LIT101 in
T101 is not low; otherwise no pump is switched on
and PLC201 Closes MV201.

The row indicated by FR1.1 in Table 6 shows the invariant.
The rows in the the second column in Table 6 shows all the
Boolean expressions that are connected with a logical OR
operation to form the complete invariant for FR1.1.

8.1.2 Detection of Attack on Actuators in a Multiple Stages
This attack targets MV301 and P602. Either FR1.6 (“pump
water to UF backwash system”) and FR7.1 (“control water
flow direction to UF backwash system”) can be used to
detect this attack.

The process logic of FR1.6 is that water can be pumped
out of tank T602 using P602 when water level indicated by
LS602 is not low and valve MV301 is opening; otherwise
water is not pumped. The process logic of FR7.1 is similar
to that of FR1.6. The invariant based on FR1.6 is shown in
row FR1.6 in Table 6.

8.1.3 Detection of Attack on Single Sensor in One Stage
This attack targets LIT101 and LIT301. Unfortunately, there
is no one FR that functionally couples both the DPs, nor
through information state coupling. Therefore, this attack
is an example where a single invariant is not sufficient to
detect it. Among others, two FRs, FR2.1 (“determine water
level in raw water tank in stage-1”) and FR2.2 (“determine
water level in UF feed tank in stage-3”) can be used to detect
this attack. The process logics are:

• FR2.1 is directly dependent on LIT101 and has infor-
mation state coupling with P101, P102, P601, LS601
and MV101. FR2.1.1, indicates that LIT101 can be
used for feeding-in water to tank T101. The process
logic of FR2.1.1 is that water can be fed into T101
by using pump P601 and opening the valve MV101
if water level indicated by LIT101 is low and water
level indicated by LS601 is not low.

• Similar to FR2.1.1, FR2.1.2 indicates that LIT101 can
be used for pumping out water from T101. The
process logic of FR2.1.2 is same as FR1.1.

• FR2.2 directly relates to LIT301 and has informa-
tion state coupling with P101, P102, P301, P302 and

MV201. Decomposing FR2.2, FR2.2.1 states that if
LIT301 indicates a water level as low then water can
be fed into the tank T301 by opening valve MV201
and switching on either pump P101 or P102. This
requirement is the same as FR1.1.

• Another requirement, FR2.2.2, states that if LIT301 is
not low then water can be pumped out of T301 by
switching on either P302 or P301 and opening the
valve MV302.

The invariants are shown in Table 6 indexed by the FRs.

8.1.4 Detection of Attack on Multiple Sensors in One Stage
There is no single FR that relates LIT301 and FIT301 (targets
of this attack) together. We find FR2.2.2 (discussed before)
that uses LIT301 along with other DPs, and the invariant
from FR2.2.2 is already derived. FR3.3 uses FIT301 along
with four other DPs, P301, P302, LIT401 and MV302, and
states “measure water flow rate using FIT301 in Stage-3
when either P301 or P302 is switched On provided water
level indicated by LIT401 is Low and MV302 is Open; oth-
erwise water flow rate is zero as no pump can be switched
On”. The invariant is shown in row FR3.3 in Table 6.

8.1.5 Detection of Attack on Sensors and Actuators in Mul-
tiple Stages
This attack targets the sensors (AIT402, P301 and P302) of
chemical properties of water and the detection of this attack
is relatively more challenging. There is no single FR that
relates all theses DPs together. Hence, we consider the four
most relevant FRs, where each involves a subset of these
DPs.

• FR4.8 (“calculate chemical properties of water in
stage-4””) is directly related to AIT402 and has cou-
pling with P401 and P402. The process logic is that
AIT402 should detect low levels of chemicals if none
of the pumps are on; otherwise, it should show a
non-low level of chemicals as fresh water is pumped
using either P401 or P402.

• FR5.1 (“pump chemicals into water from Tank T402
in stage-4”) is directly related to P403 and P404 and
has coupling with AIT402 and LS401. The process
logic is that if chemical level indicated by AIT402
is low then pump chemicals into water using either
P403 or P404 provided the amount of chemical indi-
cated by LS401 in the chemical tank is not low.

• FR1.2 (“pump water from Stage-3 to RO feed tank
in Stage-4”) is directly related to P301 and P302 and
has coupling with LIT301, MV302 and LIT401. The
Process logic is that if water-level shown by LIT401
is low then water is pumped using either P301 or
P304 through the valve MV302 (=On) provided the
water level indicated by LIT301 is not low.

• FR7.4 (“control water flow direction from stage-3
to stage-4”) is directly related to MV302 and has
coupling with P301, P302 and LIT401. The process
logic is that MV302 is open whenever either P301 or
P302 is switched on provided LIT401 is not high.

The coupling in each of these FRs is information state
coupling and the invariants are shown in Table 6.

12

TABLE 6
Invariant derived from process logic of various FRs.

FR Boolean Expression Label

FR1.1

(LIT101! = Low) ∧ (P101 = On) ∧ (P102 = Off) ∧ (MV 201 = Open) ∧ (LIT301 = Low) Non-anomaly
(LIT101! = Low) ∧ (P101 = Off) ∧ (P102 = On) ∧ (MV 201 = Open) ∧ (LIT301 = Low) Non-anomaly
(LIT101! = Low) ∧ (P101 = On) ∧ (P102 = Off) ∧ (MV 201 = Open) ∧ (LIT301! = High) Non-anomaly
(LIT101! = Low) ∧ (P101 = Off) ∧ (P102 = On) ∧ (MV 201 = Open) ∧ (LIT301! = High) Non-anomaly
(LIT101! = Low) ∧ (P101 = Off) ∧ (P102 = Off) ∧ (MV 201 = Close) ∧ (LIT301! = Low) Non-anomaly
(LIT101 = Low) ∧ (P101 = Off) ∧ (P102 = Off) ∧ (MV 201 = Close) ∧ (LIT301! = Low) Non-anomaly
(LIT101 = Low) ∧ (P101 = Off) ∧ (P102 = Off) ∧ (MV 201 = Close) ∧ (LIT301 = Low) Non-anomaly

FR1.6
(LS602! = Low) ∧ (MV 301 = Open) ∧ (P602 = On) Non-anomaly
(LS602 = Low) ∧ (MV 301 = Close) ∧ (P602 = Off) Non-anomaly
(LS602! = Low) ∧ (MV 301 = Close) ∧ (P602 = Off) Non-anomaly

FR2.1.1

(LIT101 = Low) ∧ (MV 101 = Open) ∧ (LS601! = Low) ∧ (P601 = On) Non-anomaly
(LIT101! = High) ∧ (MV 101 = Open) ∧ (P601 = On) ∧ (LS601! = Low) Non-anomaly
(LIT101! = Low) ∧ (MV 101 = Close) ∧ (LS601! = Low) ∧ (P601 = Off) Non-anomaly
(LIT101! = Low) ∧ (MV 101 = Close) ∧ (LS601 = Low) ∧ (P601 = Off) Non-anomaly

FR2.2.2

(LIT301! = Low) ∧ (P301 = On) ∧ (P302 = Off) ∧ (MV 302 = Open) Non-anomaly
(LIT301! = Low) ∧ (P301 = Off) ∧ (P302 = On) ∧ (MV 302 = Open) Non-anomaly
(LIT301! = Low) ∧ (P301 = Off) ∧ (P302 = Off) ∧ (MV 302 = Close) Non-anomaly
(LIT301 = Low) ∧ (P301 = Off) ∧ (P302 = Off) ∧ (MV 302 = Close) Non-anomaly

FR3.3

(LIT401 = Low) ∧ (P301 = On) ∧ (P302 = Off) ∧ (MV 302 = Open) ∧ (FIT301! = 0) Non-anomaly
(LIT401 = Low) ∧ (P301 = Off) ∧ (P302 = On) ∧ (MV 302 = Open) ∧ (FIT301! = 0) Non-anomaly
(LIT401! = Low) ∧ (P301 = Off) ∧ (P302 = Off) ∧ (MV 302 = Close) ∧ (FIT301 = 0) Non-anomaly
(LIT401 = Low) ∧ (P301 = Off) ∧ (P302 = Off) ∧ (MV 302 = Close) ∧ (FIT301 = 0) Non-anomaly

FR4.8
(AIT402! = Low) ∧ (P401 = On) ∧ (P402 = Off) Non-anomaly
(AIT402! = Low) ∧ (P401 = Off) ∧ (P402 = On) Non-anomaly
(AIT402 = Low) ∧ (P401 = Off) ∨ (P402 = Off) Non-anomaly

FR5.1

(P403 = On) ∧ (P404 = Off) ∧ (LS401! = Low) ∧ (AIT402 = Low) Non-anomaly
(P403 = Off) ∧ (P404 = On) ∧ (LS401! = Low) ∧ (AIT402 = Low) Non-anomaly

(P403 = Off) ∧ (P402 = Off)) ∧ (LS401! = Low) ∧ (AIT402 = High) Non-anomaly
(P403 = Off) ∧ (P402 = Off)) ∧ (LS401 = Low) ∧ (AIT402 = High) Non-anomaly

FR1.2

(LIT301! = Low) ∧ (P301 = On) ∧ (P302 = Off) ∧ (MV 302 = Open) ∧ (LIT401 = Low) Non-anomaly
(LIT301! = Low) ∧ (P301 = Off) ∧ (P302 = On) ∧ (MV 302 = Open) ∧ (LIT401 = Low) Non-anomaly

(LIT301! = Low) ∧ (P301 = Off) ∧ (P302 = Off) ∧ (MV 302 = Close) ∧ (LIT401! = Low) Non-anomaly
(LIT301 = Low) ∧ (P301 = Off) ∧ (P302 = Off) ∧ (MV 302 = Close) ∧ (LIT401! = Low) Non-anomaly

FR1.2
(MV 302 = Open) ∧ (P301 = On) ∧ (P302 = Off) ∧ (LIT401! = High) Non-anomaly
(MV 302 = Open) ∧ (P301 = Off) ∧ (P302 = On) ∧ (LIT401! = High) Non-anomaly
(MV 302 = Close) ∧ (P301 = Off) ∧ (P302 = Off) ∧ (LIT401! = Low) Non-anomaly

8.2 Performance of Axiomatic Detector

An AD-based invariant checker is built based on one invari-
ant, i.e., such a checker is limited to detect attacks on the
DPs present in the invariant. Work in [8] has reported four
such invariant checkers. In this paper, we derive nine new
such invariant checkers, shown in Table 6, and an anomaly
is reported if at least one of them reports anomaly.

Each of these checkers is built using decision tree based
supervised machine learning as in [8]. In brief, for each
invariant, a decision tree model is built with a training set
consisting of only those records that are sufficient to detect
anomalies. For instance, in FR1.1, we have 7 rows of non-
anomalies and the remaining 25 rows as anomalies, and
hence training is done only with 32 records, but testing
is done on 1000 records created randomly that are labeled
based on the invariant in Table 6 to generate ground truth.
We have observed that, for every attack, one of the nine
checkers raises alarm for entire duration of the attack.
For instance, the duration of one instance of our second
attack is 10 timesteps, and 10 out of 10 timesteps of our
invariant checkers indicates an attack (note that the first
three timesteps should not be considered as an attack as
they represent sensor settlement delay). In our first attack,
none of the AD-based invariant checkers raised anomaly. In
general, we observe that these checkers have not missed out
any attack in Table 6. However, these checkers are limited

to detect attacks that target the DPs corresponding to a
particular FR and to detect state transition effects in CPSs.

8.3 Limitations of Axiomatic Detectors
Our proposed methodology is constrained by two factors.
First, the construction of FRs that lead to the creation of in-
variants can differ significantly if the designer’s knowledge
of the CPS requirements is limited. Second, the generation
of adversarial data logs to defeat data-driven invariant
checkers is dependent on the capability of the attacker’s
understanding of the operational data logs. However, our
approach is extensible to other similar CPSs that disclose a
significant amount of historian data logs and some informa-
tion about the data-driven invariant checker.

9 CONCLUSION

In this paper, we have proposed a framework for preparing
adversarial attacks targeting data-driven invariant checkers.
We categorise the attacks into five groups based on the type
and stage of the targeted DPs. Considering a real testbed,
namely SWaT, we show that the false alarms can be as
high as about 80% with our adversarial attacks. We have
designed nine new axiomatic design-driven invariant check-
ers to detect adversarial attacks and our results show that
the these invariant checkers do not raise any false alarms.
However, while our design-driven invariant checkers are

13

robust against adversarial attacks (i.e., they are not caused to
report false positives), the checkers are not able to detect that
an attack is being attempted. Our study in this paper shows
interesting research directions in blending the advantages of
different kinds of invariant checkers, including (axiomatic)
design-driven and data-driven, as well as the identification
of DPs that are targets of adversarial attacks.

ACKNOWLEDGMENTS

This research/project is supported by the NRF, Singapore,
under its National Satellite of Excellence Programme “De-
sign Science and Technology for Secure Critical Infras-
tructure” (Award Number: NSoE DeST-SCI2019-0004). Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
reflect the views of NRF, Singapore.

REFERENCES

[1] M. Al-Mhiqani, R. Ahmad, W. Mohamed, A. Hassan, Z. Z. Abidin,
N. Ali, and K. Abdulkareem, “Cyber-security incidents: A review
cases in cyber-physical systems,” International Journal of Advanced
Computer Science and Applications, vol. 9, pp. 499–508, 2018.

[2] L. Maglaras, M. A. Ferrag, A. Derhab, M. Mukherjee, H. Janicke,
and S. Rallis, “Threats, countermeasures and attribution of cyber
attacks on critical infrastructures,” Security and Safety, vol. 5, pp.
1–9, 12 2018.

[3] R. Clark, S. Panguluri, T. Nelson, and R. Wyman, “Protecting
drinking water utilities from cyber threats,” Journal - American
Water Works Association, vol. 109, pp. 50–58, 02 2017.

[4] “Secure Water Treatment (SWaT),”
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs swat/,
2020, accessed: May 2022.

[5] A. P. Mathur and N. O. Tippenhauer, “Swat: a water treatment
testbed for research and training on ICS security,” in Proc. Interna-
tional Workshop on Cyber-physical Systems for Smart Water Networks
(CySWater@CPSWeek 2016). IEEE Computer Society, 2016, pp.
31–36.

[6] A. Erba and N. O. Tippenhauer, “No need to know physics:
Resilience of process-based model-free anomaly detection for in-
dustrial control systems,” 2020.

[7] V. R. Palleti, J. V. Joseph, and A. Silva, “A contribution of axiomatic
design principles to the analysis and impact of attacks on critical
infrastructures,” International Journal of Critical Infrastructure Pro-
tection, vol. 23, pp. 21–32, 2018.

[8] C. H. Yoong, V. R. Palleti, R. R. Maiti, A. Silva, and C. M. Poskitt,
“Deriving invariant checkers for critical infrastructure using ax-
iomatic design principles,” Springer Cybersecurity, vol. 4, 2021.

[9] S. Adepu and A. Mathur, “Distributed detection of single-stage
multipoint cyber attacks in a water treatment plant,” in Proc.
of ACM Asia Conference on Computer and Communications Security
(AsiaCCS). ACM, 2016, pp. 449–460.

[10] ——, “Distributed attack detection in a water treatment plant:
Method and case study,” IEEE Transactions on Dependable and Secure
Computing, 2018.

[11] A. Hassanzadeh, A. Rasekh, S. Galelli, M. Aghashahi, R. Taormina,
A. Ostfeld, and M. K. Banks, “A review of cybersecurity incidents
in the water sector,” Journal of Environmental Engineering, 09 2019.

[12] J. Leyden, “Water treatment plant hacked, chemical
mix changed for tap supplies,” The Register,
2016, accessed: July, 2020. [Online]. Available:
https://www.theregister.com/2016/03/24/water utility hacked/

[13] ICS-CERT Alert, “Cyber-attack against Ukrainian critical in-
frastructure,” https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-
056-01, 2016, document number: IR-ALERT-H-16-056-01.

[14] F. Pasqualetti, F. Dorfler, and F. Bullo, “Cyber-physical attacks in
power networks: Models, fundamental limitations and monitor
design,” in Proc. IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC 2011). IEEE, 2011, pp.
2195–2201.

[15] W. Aoudi, M. Iturbe, and M. Almgren, “Truth will out: Departure-
based process-level detection of stealthy attacks on control sys-
tems,” in Proc. ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). ACM, 2018, pp. 817–831.

[16] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection
in cyber physical systems using recurrent neural networks,” in
Proc. of IEEE International Symposium on High Assurance Systems
Engineering, 2017, pp. 140–145.

[17] J. Kim, J. Yun, and H. C. Kim, “Anomaly detection for industrial
control systems using sequence-to-sequence neural networks,” in
Proc. International Workshop on the Security of Industrial Control
Systems and Cyber-Physical Systems (CyberICPS 2019), ser. LNCS,
vol. 11980. Springer, 2019, pp. 3–18.

[18] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly
detection for a water treatment system using unsupervised ma-
chine learning,” in Proc. of IEEE International Conference on Data
Mining Workshops: Data Mining for Cyberphysical and Industrial
Systems, 2017, pp. 1058–1065.

[19] Z. He, A. Raghavan, G. Hu, S. M. Chai, and R. B. Lee, “Power-
grid controller anomaly detection with enhanced temporal deep
learning,” in Proc. IEEE International Conference On Trust, Security
And Privacy In Computing And Communications (TrustCom). IEEE,
2019, pp. 160–167.

[20] M. Kravchik and A. Shabtai, “Detecting cyber attacks in industrial
control systems using convolutional neural networks,” in Proc.
Workshop on Cyber-Physical Systems Security and PrivaCy (CPS-SPC
2018). ACM, 2018, pp. 72–83.

[21] P. Schneider and K. Böttinger, “High-performance unsupervised
anomaly detection for cyber-physical system networks,” in Proc.
of Workshop on Cyber-Physical Systems Security and PrivaCy (CPS-
SPC). ACM, 2018, pp. 1–12.

[22] M. A. M. Carrasco and C. Wu, “An unsupervised framework for
anomaly detection in a water treatment system,” in Proc. of IEEE
International Conference On Machine Learning And Applications, 2019,
pp. 1298–1305.

[23] L. Cheng, K. Tian, and D. D. Yao, “Orpheus: Enforcing cyber-
physical execution semantics to defend against data-oriented at-
tacks,” in Proc. Annual Computer Security Applications Conference
(ACSAC). ACM, 2017, pp. 315–326.

[24] Q. Lin, S. Adepu, S. Verwer, and A. Mathur, “TABOR: A graphical
model-based approach for anomaly detection in industrial control
systems,” in Proc. Asia Conference on Computer and Communications
Security (AsiaCCS). ACM, 2018, pp. 525–536.

[25] V. Narayanan and R. B. Bobba, “Learning based anomaly detec-
tion for industrial arm applications,” in Proc. Workshop on Cyber-
Physical Systems Security and PrivaCy (CPS-SPC 2018). ACM, 2018,
pp. 13–23.

[26] S. Adepu, F. Brasser, L. Garcia, M. Rodler, L. Davi, A. Sadeghi, and
S. A. Zonouz, “Control behavior integrity for distributed cyber-
physical systems,” in Proc. of ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), 2020, pp. 30–40.

[27] Y. Harada, Y. Yamagata, O. Mizuno, and E. Choi, “Log-based
anomaly detection of CPS using a statistical method,” in Proc.
of IEEE International Workshop on Empirical Software Engineering in
Practice, 2017, pp. 1–6.

[28] C. M. Ahmed, M. Ochoa, J. Zhou, A. P. Mathur, R. Qadeer,
C. Murguia, and J. Ruths, “NoisePrint: Attack detection using
sensor and process noise fingerprint in cyber physical systems,”
in Proc. of Asia Conference on Computer and Communications Security
(AsiaCCS). ACM, 2018, pp. 483–497.

[29] C. M. Ahmed, J. Zhou, and A. P. Mathur, “Noise matters: Using
sensor and process noise fingerprint to detect stealthy cyber at-
tacks and authenticate sensors in CPS,” in Proc. of Annual Computer
Security Applications Conference (ACSAC). ACM, 2018, pp. 566–581.

[30] E. Aggarwal, M. Karimibiuki, K. Pattabiraman, and A. Ivanov,
“CORGIDS: A correlation-based generic intrusion detection sys-
tem,” in Proc. of ACM Workshop on Cyber-Physical Systems Security
and Privacy, 2018, pp. 24–35.

[31] T. K. Das, S. Adepu, and J. Zhou, “Anomaly detection in indus-
trial control systems using logical analysis of data,” Computers &
Security, vol. 96, 2020.

[32] J. Giraldo, D. I. Urbina, A. Cardenas, J. Valente, M. A. Faisal,
J. Ruths, N. O. Tippenhauer, H. Sandberg, and R. Candell, “A sur-
vey of physics-based attack detection in cyber-physical systems,”
ACM Computing Surveys, vol. 51, no. 4, pp. 76:1–76:36, 2018.

[33] D. Formby, P. Srinivasan, A. M. Leonard, J. D. Rogers, and R. A.
Beyah, “Who’s in control of your control system? device fin-

14

gerprinting for cyber-physical systems,” in Proc. Annual Network
and Distributed System Security Symposium (NDSS). The Internet
Society, 2016.

[34] Q. Gu, D. Formby, S. Ji, H. Cam, and R. A. Beyah, “Fingerprinting
for cyber-physical system security: Device physics matters too,”
IEEE Security & Privacy, vol. 16, no. 5, pp. 49–59, 2018.

[35] K. Yang, Q. Li, X. Lin, X. Chen, and L. Sun, “ifinger: Intrusion
detection in industrial control systems via register-based finger-
printing,” IEEE Journal of Selected Areas in Communications, vol. 38,
no. 5, pp. 955–967, 2020.

[36] M. Kneib and C. Huth, “Scission: Signal characteristic-based
sender identification and intrusion detection in automotive net-
works,” in Proc. of ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 787–800.

[37] Y. Chen, C. M. Poskitt, J. Sun, S. Adepu, and F. Zhang, “Learning-
guided network fuzzing for testing cyber-physical system de-
fences,” in Proc. IEEE/ACM International Conference on Automated
Software Engineering (ASE 2019). IEEE Computer Society, 2019,
pp. 962–973.

[38] Y. Chen, B. Xuan, C. M. Poskitt, J. Sun, and F. Zhang, “Active
fuzzing for testing and securing cyber-physical systems,” in Proc.
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2020.

[39] H. Wijaya, M. Aniche, and A. Mathur, “Domain-based fuzzing
for supervised learning of anomaly detection in cyber-physical
systems,” in Proc. International Workshop on Engineering and Cy-
bersecurity of Critical Systems (EnCyCriS 2020). ACM, 2020.

[40] Y. Chen, C. M. Poskitt, and J. Sun, “Towards learning and verifying
invariants of cyber-physical systems by code mutation,” in Proc.
of International Symposium on Formal Methods (FM), vol. 9995.
Springer, 2016, pp. 155–163.

[41] K. Pal, S. Adepu, and J. Goh, “Effectiveness of association rules
mining for invariants generation in cyber-physical systems,” in
IEEE International Symposium on High Assurance Systems Engineer-
ing, 2017, pp. 124–127.

[42] C. Feng, V. R. Palleti, A. Mathur, and D. Chana, “A systematic
framework to generate invariants for anomaly detection in in-
dustrial control systems,” in Proc. Annual Network and Distributed
System Security Symposium (NDSS 2019). The Internet Society,
2019.

[43] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using
code mutation to learn and monitor invariants of a cyber-physical
system,” in Proc. of IEEE Symposium on Security and Privacy, 2018,
pp. 648–660.

[44] H. Choi, W. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Xinyan, “Detecting attacks against robotic vehicles: A control
invariant approach,” in Proc. ACM SIGSAC Conference on Computer
and Communications Security (CCS 2018). ACM, 2018, pp. 801–816.

[45] A. A. Cárdenas, S. Amin, Z. Lin, Y. Huang, C. Huang, and S. Sastry,
“Attacks against process control systems: risk assessment, detec-
tion, and response,” in Proc. of ACM Symposium on Information,
Computer and Communications Security (AsiaCCS). ACM, 2011, pp.
355–366.

[46] S. Adepu and A. Mathur, “Using process invariants to detect
cyber attacks on a water treatment system,” in Proc. of International
Conference on ICT Systems Security and Privacy Protection (SEC), vol.
471. Springer, 2016, pp. 91–104.

[47] M. A. Umer, A. Mathur, K. N. Junejo, and S. Adepu, “Integrating
design and data centric approaches to generate invariants for
distributed attack detection,” in Proceedings of the 2017 Workshop
on Cyber-Physical Systems Security and PrivaCy. Association for
Computing Machinery, 2017, p. 131–136.

[48] Y. Jia, J. Wang, C. M. Poskitt, S. Chattopadhyay, J. Sun,
and Y. Chen, “Adversarial attacks and mitigation for anomaly
detectors of cyber-physical systems,” CoRR, vol. abs/2105.10707,
2021. [Online]. Available: https://arxiv.org/abs/2105.10707

[49] “iTrust Labs: Datasets,” https://itrust.sutd.edu.sg/itrust-
labs datasets/, 2020, accessed: May 2022.

[50] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to sup-
port research in the design of secure water treatment systems,” in
Proc. of International Conference on Critical Information Infrastructures
Security, 2016.

Rajib Ranjan Maiti is currently an Assistant
Professor in CSIS, BITS Pilani, Hyderabad cam-
pusn India. He has done his PhD in CSE at
IIT Kharagpur, India. His research interest lies
in the area of Cyber Security in IoT and CPS.
He has published his research works in journals
like Transaction on Mobile Computing, Computer
Networks and Cybersecurity, and conferences
like Esorics, WiSec and AsiaCCS. He is currently
executing two sponsored projects related to cy-
ber security, one funded by SERB, DST, India

and the other funded by Axiado, India.

Andrew Yoong Cheah Huei has received a PhD
from National University of Singapore (NUS),
Singapore. He studied at Iowa State University,
USA for both MSc and BSc. He has over 20
years of experience as a trainer and a teacher.
He has taught many areas including cybersecu-
rity, machine learning, IOT, networking, operat-
ing system, mobile applications, and Python pro-
gramming. He has experienced in research and
teaching in industrial control systems (ICS). His
current research interests include cybersecurity,

machine learning, ICS, IOT, education computing, and data mining. He
has many publications in peer-reviewed journals and conferences. He
has served as a reviewer for many conferences and journals.

Venkata Reddy Palleti is a assistant profes-
sor at Indian institute of petroleum and energy-
Visakhapatnam. Before joining this, he worked
as a research fellow at iTrust, SUTD, Singapore.
during his Postdoctoral Researcher he worked
on the design of secured cyber-physical systems
.He has published several research articles in
the major conferences like NDSS, ICC and jour-
nals like ACM TCPS, Computers and Chemical
Engineering and Springer Cyber Security. His
research interests are in cyber physical systems,

water distribution systems and data analytics.

Arlindo Silva has a PhD in Mechanical Engi-
neering. His current research interests rest on
engineering design, product development, cre-
ativity, materials selection methodologies, addi-
tive manufacturing in composite structures, cost
modelling and management of uncertainty in
design. He published over a hundred and fifty
papers in journals, conferences and book chap-
ters, more than 50 patents and authored/co-
edited five books in engineering related topics.
He received the MIT-Portugal Education Innova-

tion Award in 2009 and was a Professor of Excellence at the University
of Lisbon in 2009, 2013, 2014 and 2015, before joining the Singapore
University of Technology and Design as an Associate Professor with
the Engineering Product Development Pillar. He is the current NAMIC
(National Additive Manufacturing Innovation Cluster) Hub Director at
SUTD, liaising Singaporean companies with SUTD’s expertise in Ad-
ditive Manufacturing and Composites Technologies through the DManD
(Digital Manufacturing and Design) Center.

Christopher M. Poskitt is an Assistant Profes-
sor of Computer Science (Education) at Singa-
pore Management University (SMU), where he
is a member of the Software Analysis and Ver-
ification Group. Prior to SMU, he held research
and teaching positions at ETH Zürich, Switzer-
land, and the Singapore University of Tech-
nology and Design. His research broadly ad-
dresses the problem of engineering correct and
secure software/systems, towards which he has
co-developed techniques for testing/defending

cyber-physical systems, tools for analysing execution models of con-
currency APIs, and logics for reasoning about the correctness of graph-
rewriting programs. His research interests span software engineering,
formal methods, cybersecurity, and computer science education.

