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Abstract

Program logics typically reason about an over-approximation of program behaviour
to prove the absence of bugs. Recently, program logics have been proposed that
instead prove the presence of bugs by means of under-approximate reasoning,
which has the promise of better scalability. In this paper, we present an under-
approximate program logic for GP 2, a rule-based programming language for
manipulating graphs. We define the proof rules of this program logic extension-
ally, i.e. independently of fixed assertion languages, then instantiate them with a
morphism-based assertion language able to specify monadic second-order prop-
erties on graphs (e.g. path properties). We show how these proof rules can be
used to reason deductively about the presence of forbidden graph structure or fail-
ing executions. Finally, we prove our ‘incorrectness logic’ to be sound, and our
extensional proof rules to be relatively complete.

Keywords: program logics, correctness proofs, under-approximate reasoning,
monadic second-order logic, graph transformation

1. Introduction

Many problems in computer science and software engineering can be mod-
elled in terms of rule-based graph transformation [1], motivating research into
verifying the correctness of grammars and programs based on this form of com-
putation. Various approaches towards this goal have been proposed, including
techniques based on model checking [2], interactive proof assistants [3], unfold-
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ings [4, 5], k-induction [6], weakest preconditions [7, 8], strongest postcondi-
tions [9], abstract interpretation [10], and program logics [11, 12, 13].

Verification approaches based on program logics and proofs typically reason
about over-approximations of program behaviours to prove the absence of bugs.
For instance, proving a partial correctness specification {pre}P{post} guarantees
that for states satisfying pre, every successfully terminating execution of P ends
in a state satisfying post. Recently, authors have begun to investigate under-
approximate program logics that instead prove the presence of bugs, motivated
by the promise of better scalability that may result from reasoning only about the
subset of execution paths that are relevant. De Vries and Koutavas [14] proposed
the first program logic of this kind, using it to reason about state reachability for
randomised nondeterministic algorithms. O’Hearn [15] extended the idea to an
incorrectness logic that tracked both successful and erroneous executions. Under-
approximate program logics have also been explored for local reasoning [16],
concurrency [17], and proving insecurity [18].

An under-approximate specification [pres]P[res] specifies a reachability prop-
erty in the reverse direction: that every state satisfying res (‘result’) is reachable
by executing P on some state (not necessarily all) satisfying pres (‘presumption’).
In other words, res under-approximates the reachable states, allowing for sound
reasoning about undesirable behaviours without any false positives, i.e. a formal
logical basis for bug catching. This is one of many dualities under-approximate
program logics have with Hoare logics [19]. Other important dualities include the
inverted rule of consequence in which postconditions can be strenghtened (e.g. by
dropping disjuncts/paths), as well as the completeness proof which relies on weak-
est postconditions rather than weakest preconditions.

In this paper, we present an under-approximate program logic for reasoning
about the presence of bugs in GP 2 [20], a nondeterministic rule-based program-
ming language for manipulating graphs. Following O’Hearn [15], we design it as
an incorrectness logic, and show how it can be used to reason deductively about
the presence of forbidden non-local graph structures or failing executions (e.g. due
to the failure of finding a match for a rule). As our main technical result, we prove
the soundness and relative completeness of our incorrectness logic with respect to
GP 2’s formal operational semantics. The work in this paper is principally a the-
oretical exposition, but is motivated by some possible future applications, such as
the use of incorrectness logic as a basis for sound reasoning in symbolic execution
tools for graph and model transformations (e.g. [21, 22, 23]).

This is a revised and extended version of the ICGT’21 paper, “Incorrectness
Logic for Graph Programs” [24], and contains the following new content:
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• We target GP 2 [20], a full-fledged graph programming language, as op-
posed to the rudimentary language explored in [24].

• Our under-approximate program logic is presented in an extensional style,
i.e. independent of any fixed assertion language.

• We instantiate the extensional program logic using monadic second-order
conditions with expressions, i.e. a morphism-based assertion language com-
bining the ability to reason about non-local structural graph properties (as
in [25]) with properties over attributes (as in [12, 13]).

• Fully revised examples and explanations throughout.

Organisation. The paper is organised as follows. In Section 2 we introduce the
syntax and semantics of the graph programming language GP 2. In Section 3,
we present an extensional under-approximate program logic for GP 2, proving its
soundness and relative completeness. In Section 4, we define an assertion lan-
guage (‘ME-conditions’) for specifying monadic second-order properties of GP 2
graphs, and ‘plug-in’ the language to our extensional program logic. Section 5 ex-
plores the utility of under-approximate reasoning in the context of some programs
for recognising cycle graphs. In Section 6 we survey some related work, before
concluding in Section 7.

2. The Graph Programming Language GP 2

This section introduces GP 2, a nondeterministic rule-based programming lan-
guage for manipulating graphs. The language is implemented by a compiler that
generates C code [26, 27], and is available to download online1.

2.1. Underlying Theory: Graphs and Rules
We begin by introducing graphs and rules, which are respectively the program

states and units of computation in GP 2.
GP 2 uses a definition of graphs in which edges are directed, nodes (resp. edges)

are partially (resp. totally) labelled, and both parallel edges and loops are allowed
to exist. All graphs in this paper will be totally labelled except for the interface
graphs in rule applications, where they are needed for technical reasons to support
relabelling.

1https://github.com/UoYCS-plasma/GP2
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We remark that nodes in GP 2 can be distinguished as rooted, which allows for
faster rule-matching in the implementation by localising the search for a match
to the neighbourhoods of rooted graph nodes [28] (i.e. instead of searching the
entire graph). The underlying theory utilised in this paper supports rooted graph
transformation (see Appendix A and [29]). For practical purposes, in this paper,
one can think of ‘rootedness’ as a special kind of binary label (a node is either
rooted or not).

Definition 2.1 (Graph). Let C be a set of labels. A graph over C is a system
G = 〈VG, EG, sG, tG, lG,mG, pG〉 comprising a finite set VG of nodes, a finite set EG

of edges, source and target functions sG, tG : EG → VG, a partial node labelling
function lG : VG → C, an edge labelling function mG : EG → C, and a function
pG : VG → B determining node rootedness, where B = {true, false}.

If VG = ∅, then G is the empty graph, which we denote by ∅. Given a node
v ∈ VG, we write lG(v) = ⊥ to express that lG(v) is undefined. A graph G is totally
labelled if lG is a total function.

We write G(C⊥) (resp. G(C)) to denote the class of all (resp. all totally la-
belled) graphs over label alphabet C.

GP 2 programs operate on graphs labelled over two components: a list of inte-
gers and/or character strings, and an optional mark (or colour) for convenience
when implementing graph algorithms. Graphs labelled over this alphabet are
known as host graphs.

Definition 2.2 (Label alphabet L). We denote by L the label alphabet for host
graphs:

L = L ∪ (L ×M)

where L = (Z ∪ Char∗)∗ and M = {red, green, blue, grey, dashed}.

Example 2.3 (Graph). Figure 1 depicts a graph G from G(L). It consists of
four nodes (v1 through to v4) and three edges (e1 through to e3), with sources
sG(e1) = v1, sG(e2) = v2, sG(e3) = v4, and targets tG(e1) = v2, tG(e2) = v4, and
tG(e3) = v3. The list component of each node/edge consists either of an atomic
value (e.g. 5) or a list of values (e.g. 8 :8). All nodes/edges are unmarked, except
for v3 which has the mark green, and e3 which has the mark dashed. Node v2 is
rooted, which is depicted via the double border.

We remark that node/edge identifiers will often be omitted from depictions of
graphs unless they are specifically required.
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Figure 1: Example graph from G(L)

Each graph G induces a predicate pathG(v,w, E) which holds if there is a di-
rected path in the graph from node v to w avoiding any edges in E. This predicate
will be used later (Section 4) to give a semantics to the (syntactic) path predicates
of our assertion language.

Definition 2.4 (Semantic path predicate). Given a graph G, the (semantic) path
predicate) pathG : VG × VG × 2EG → B is defined inductively for nodes v,w ∈ VG

and sets of edges E ⊆ EG. If v = w, then pathG(v,w, E) holds. If v , w, then
pathG(v,w, E) holds if there exists an edge e ∈ EG \ E such that sG(e) = v and
pathG(tG(e),w, E).

Consider graph G in Figure 1. The predicate pathG(v1, v3, ∅) holds, for exam-
ple, whereas pathG(v1, v3, {e3}) and pathG(v3, v1, ∅) do not.

The formal semantics of graph-matching and rule application (Appendix A)
requires us to be able to relate two graphs in a formal way. For this purpose, we
use graph morphisms, which are structure- and label-preserving mappings from
the nodes and edges of one graph to another. (We remark that rootedness and
non-rootedness are preserved in morphisms, too.)

Definition 2.5 (Graph morphism). A graph morphism g : G → H between graphs
G,H in G(C⊥) consists of two functions gV : VG → VH and gE : EG → EH that
preserve sources, targets, labels, and rootedness; that is, sH ◦ gE = gV ◦ sG,
tH ◦ gE = gV ◦ tG, mH ◦ gE = mG, pH ◦ gV = pG, and lH(gV(v)) = lG(v) for all
nodes v for which lG(v) , ⊥. We call G,H respectively the domain and codomain
of g, denoted by dom(g) and codom(g).

A morphism g is injective (surjective) if gV and gE are injective (surjective).
Injective morphisms are usually denoted by hooked arrows, ↪→. A morphism g
is an isomorphism if it is injective, surjective, and satisfies lH(gV(v)) = ⊥ for all
nodes v with lG(v) = ⊥. In this case G and H are isomorphic, which is denoted
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by G � H. Finally, a morphism g is an inclusion if g(x) = x for all nodes and
edges x, and is undefinedness-preserving if lH(gV(v)) = ⊥ for all nodes v such that
lG(v) = ⊥.

Next, we introduce rules, which are the underlying unit of computation in the
execution of graph programs. Rules consist of three graphs: a left-hand graph
L, indicating the sub-graph to be matched; an interface graph K, indicating the
elements of the match that are preserved (i.e. not deleted); and a right-hand graph
R, indicating the labels to be manipulated and the structure to be created.

Definition 2.6 (Rule). A (concrete) rule r : 〈L ←↩ K ↪→ R〉 comprises totally
labelled graphs L,R ∈ G(L), a partially labelled graph K ∈ G(L⊥), and inclusions
K ↪→ L, K ↪→ R. We call L,R the left- and right-hand graphs of r, and K its
interface.

Intuitively, an application of a rule r to a graph G ∈ G(L) removes items in
L − K, preserves those in K, adds the items in R − K, and relabels the unlabelled
nodes in K. An injective morphism g : L ↪→ G is a match for r if it satisfies the
dangling condition, i.e. no node in g(L) − g(K) is incident to an edge in G − g(L).
In this case, G directly derives H ∈ G(L) with comatch h : R ↪→ H, denoted
G ⇒r,g,h H (or just G ⇒r H), by: (1): removing all nodes and edges in g(L)−g(K);
(2) disjointly adding all nodes and edges from R − K, keeping their labels (for
e ∈ ER − EK , sH(e) is sR(e) if sR(e) ∈ VR − VK , otherwise gV(sR(e)); targets
analogous); (3) for every node in K, lH(gV(v)) becomes lR(v). Semantically, direct
derivations are constructed as two ‘natural pushouts’ (see Appendix A and [30]
for the technical details).

2.2. Assignments and Rule Schemata
Specifying concrete rules directly over graphs in G(L) is insufficient for graph

programs in practice. Suppose, for example, that one wanted to specify a rule that
created a loop incident to a node labelled with any integer: this would require an
infinite number of rules over each value in Z.

To address this, GP 2 instead requires programmers to specify (conditional)
rule schemata, which are essentially rules but labelled over expressions instead.
Each rule schema represents (potentially) infinitely many concrete rules, depend-
ing on how the variables are assigned and expressions evaluated. The graphs of
rule schemata are known as rule graphs, and the expressions they are labelled
over are derived according to a grammar. We begin by defining this grammar, and
show how rule graphs can be instantiated into host graphs via assignments and
expression evaluation.
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Label ::= List [Mark]
List ::= LVar | empty | Atom | List ‘:’ List
Atom ::= AVar | Integer | String
Integer ::= IVar | [‘-’] Digit {Digit} | ‘(’Integer‘)’ |

Integer (‘+’ | ‘-’ | ‘∗’ | ‘/’) Integer |
(indeg | outdeg) ‘(’Node‘)’ |
length ‘(’(LVar | AVar | SVar)‘)’

String ::= SVar | Char | ‘“ ’{Character}‘ ”’ |
String ‘.’ String

Char ::= CVar | ‘“ ’Character‘ ”’
Mark ::= red | green | blue | grey | dashed | any

Figure 2: Abstract syntax of rule graph labels

List

Atom

Integer String

Char

⊆

⊆ ⊇

⊆

L

Z ∪ Char∗

Z Char∗

Char

⊆
⊆ ⊇
⊆

Figure 3: GP 2 subtype hierarchy

Definition 2.7 (Label alphabet RG). We denote by RG the label alphabet for
rule graphs containing all expressions that can be derived from Label in the gram-
mar of Figure 2.

List expressions represent (possibly infinite) sets of lists in L, which are ob-
tained by assigning values to (typed) variables and evaluating expressions. We
identify lists of length one with the atomic expressions they contain, allowing us
to organise the list components of RG and L into subtype hierarchies, as shown
in Figure 3. (We use the non-terminals of the grammar to denote the classes of
expressions that can be derived from them.)

A graph in G(L) can be obtained from a graph in G(RG) by means of an as-
signment (for evaluating variables in list expressions) and a morphism (for evalu-
ating in- and outdegree expressions).
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Definition 2.8 (List assignment). A list assignment is a family of mappings α =

(αX)X∈{L,A,I,S,C} where αL : LVar → L, αA : AVar → Z ∪ Char∗, αL : IVar → Z,
αS : SVar→ Char∗, and αC : CVar→ Char. For simplicity, we will omit subscripts
as exactly one mapping is applicable to a given variable.

The evaluation of a list expression l with respect to a morphism g and as-
signment α, denoted lg,α, is obtained by substituting g(v) for node identifiers v,
substituting α(x) for variables x, and evaluating expressions in the standard way.
If an integer expression i is of the form indeg(v) (resp. outdeg) for node identi-
fier v, then ig,α evaluates to the indegree (resp. outdegree) of g(v), i.e. the number
of edges e with v as the target (resp. v as the source). If an integer expression i is
of the form length(x) for some variable x, then ig,α evaluates to the length of the
list or string α(x) (note that atoms are lists of length one).

We denote the domain of α by dom(α), and the set of variables used in a graph
G ∈ G(RG) by vars(G). If vars(G) ⊆ dom(α), and g is a morphism defined for
all node identifiers in G, then Gg,α ∈ G(L) is the graph obtained by substituting
lg,α for every list expression l in G, and by replacing each ‘any’ mark with the
corresponding mark in the codomain of g. Morphisms can be ‘instantiated’ in the
same way, e.g. p : P ↪→ C can be instantiated to pg,α : Pg,α ↪→ Cg,α.

At this point, we have defined the rule graphs of G(RG) and shown how they
are instantiated into the host graphs of G(L). Before we define rule schemata
and their application, we have two more concepts to introduce: rule schemata
conditions, and simple expressions. Rule schemata conditions allow programmers
to constrain the possible assignments of values to variables. For example, one
may wish to be able to match an integer-labelled node, but constrain the matches
to only those above a certain value. Simple expressions are a restricted form of
RG that helps to reduce ambiguity in the assignment and rule-matching process.

Definition 2.9 (Rule schema condition). A rule schema condition Γ is an ex-
pression that can be derived from RSCon in the grammar of Figure 4.

Given a rule schema condition Γ, an assignment α, and a morphism g defined
for the node identifiers in Γ, the value of Γg,α in B is defined inductively. If Γ

has the form l1 ./ l2 with l1, l2 in List and ./ the symbol of a relational operator,
then Γg,α has the value lg,α

1 ./L lg,α
2 , where ./L is the relational operator corre-

sponding to ./. If Γ has the form type(l) with type in Type and l in List, then
Γg,α is true if type = int (resp. char, string, atom) and lg,α ∈ Z (resp. Char,
Char∗, Z ∪ Char∗). If Γ has the form edge(v1,v2) with v1, v2 node identifiers
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RSCon ::= Type ‘(’(LVar | AVar | SVar)‘)’
| List (‘=’ | ‘!=’) List
| Integer (‘>’ | ‘>=’ | ‘<’ | ‘<=’) Integer
| edge ‘(’ Node ‘,’ Node [‘,’ Label] ‘)’
| not RSCon
| RSCon (and | or) RSCon
| ‘(’ RSCon ‘)’

Type ::= int | char | string | atom
Figure 4: Abstract syntax of rule schema conditions

(resp. edge(v1,v2,l) with label l), then Γg,α is true if there is an edge in codom(g)
with source g(v1) and target g(v2) (resp. and label lg,α). If Γ has the form not Γ1

with Γ1 a rule schema condition, then Γg,α is true if Γ
g,α
1 is false. If Γ has the form

Γ1 and Γ2 (resp. Γ1 or Γ2), then Γg,α is true if Γ
g,α
1 and (resp. or) Γ

g,α
2 are true.

Finally, if Γ has the form (Γ1), then Γg,α has the value Γ
g,α
1 .

The values of variables at execution time are determined by graph matching,
hence we require that expressions in the left graph of a rule schema have a simple
shape.

Definition 2.10 (Simple expression). A list expression l is simple if: (1) l con-
tains no arithmetic, degree, or length operators (with the possible exception of a
unary minus preceding a sequence of digits); (2) l contains at most one occurrence
of a list variable; and (3) each occurrence of a string expression in l contains at
most one occurrence of a string variable.

Finally, we introduce the conditional rule schemata of GP 2, which consist of
left-hand, interface, and right-hand graphs over G(RG), along with a rule schema
condition Γ.

Definition 2.11 (Rule schema). A (conditional) rule schema r : 〈L ⇒ R,Γ〉 with
L,R ∈ G(RG) represents concrete rules rg,α : 〈Lg,α ←↩ K ↪→ Rg,α〉 where dom(α) =

vars(L) and K consists of the preserved nodes only (with all nodes unlabelled). We
require that for any rule schema, vars(R) ⊆ vars(L), vars(Γ) ⊆ vars(L), and all list
expressions in L are simple. Note that L and R must be totally labelled graphs.

The application of a rule schema r = 〈L⇒ R,Γ〉 to a host graph G ∈ G(L) con-
sists of the following steps: (1) choose an assignment α with dom(α) = vars(L);
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,!
<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit>

 -
<latexit sha1_base64="i/GqUpHmMvH0dqFN+pLi9rG2IPg=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIzHxRHbRRI9ELx4xkUcCK5kdemHC7MxmZlZCCP/hxYPGePVfvPk3DrAHBSvppFLVne6uMOFMG8/7dnJr6xubW/ntws7u3v5B8fCooWWqKNap5FK1QqKRM4F1wwzHVqKQxCHHZji8nfnNJ1SaSfFgxgkGMekLFjFKjJUeOwMphxwjQ5SSo26x5JW9OdxV4mekBBlq3eJXpydpGqMwlBOt276XmGBClGGU47TQSTUmhA5JH9uWChKjDibzq6fumVV6biSVLWHcufp7YkJircdxaDtjYgZ62ZuJ/3nt1ETXwYSJJDUo6GJRlHLXSHcWgdtjCqnhY0sIVcze6tIBUYQaG1TBhuAvv7xKGpWyf1Gu3F+WqjdZHHk4gVM4Bx+uoAp3UIM6UFDwDK/w5oycF+fd+Vi05pxs5hj+wPn8ASPqku0=</latexit>

 -
<latexit sha1_base64="i/GqUpHmMvH0dqFN+pLi9rG2IPg=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIzHxRHbRRI9ELx4xkUcCK5kdemHC7MxmZlZCCP/hxYPGePVfvPk3DrAHBSvppFLVne6uMOFMG8/7dnJr6xubW/ntws7u3v5B8fCooWWqKNap5FK1QqKRM4F1wwzHVqKQxCHHZji8nfnNJ1SaSfFgxgkGMekLFjFKjJUeOwMphxwjQ5SSo26x5JW9OdxV4mekBBlq3eJXpydpGqMwlBOt276XmGBClGGU47TQSTUmhA5JH9uWChKjDibzq6fumVV6biSVLWHcufp7YkJircdxaDtjYgZ62ZuJ/3nt1ETXwYSJJDUo6GJRlHLXSHcWgdtjCqnhY0sIVcze6tIBUYQaG1TBhuAvv7xKGpWyf1Gu3F+WqjdZHHk4gVM4Bx+uoAp3UIM6UFDwDK/w5oycF+fd+Vi05pxs5hj+wPn8ASPqku0=</latexit>

 -
<latexit sha1_base64="i/GqUpHmMvH0dqFN+pLi9rG2IPg=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIzHxRHbRRI9ELx4xkUcCK5kdemHC7MxmZlZCCP/hxYPGePVfvPk3DrAHBSvppFLVne6uMOFMG8/7dnJr6xubW/ntws7u3v5B8fCooWWqKNap5FK1QqKRM4F1wwzHVqKQxCHHZji8nfnNJ1SaSfFgxgkGMekLFjFKjJUeOwMphxwjQ5SSo26x5JW9OdxV4mekBBlq3eJXpydpGqMwlBOt276XmGBClGGU47TQSTUmhA5JH9uWChKjDibzq6fumVV6biSVLWHcufp7YkJircdxaDtjYgZ62ZuJ/3nt1ETXwYSJJDUo6GJRlHLXSHcWgdtjCqnhY0sIVcze6tIBUYQaG1TBhuAvv7xKGpWyf1Gu3F+WqjdZHHk4gVM4Bx+uoAp3UIM6UFDwDK/w5oycF+fd+Vi05pxs5hj+wPn8ASPqku0=</latexit>

,!
<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit>

,!
<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit>

,!<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit> ,!<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit> ,!<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit>
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reduce(a, b, x, y, z : list) :
<latexit sha1_base64="SLiio0fcwZ1NlxLmWBkzOeazgkM=">AAACC3icbVBNSwJRFH3Tp9mX1bLNpAQGIjMWJK6ENi0N8gNU5M3zqg/ffPDencgG9236K21aFNG2P9Cuf9MbnUVpBy4czrmXe+9xAsEVWta3sbK6tr6xmdpKb+/s7u1nDg4byg8lgzrzhS9bDlUguAd15CigFUigriOg6YyvYr95B1Jx37vFSQBdlw49PuCMopZ6mWzHpThCjCT0QwZ5WnAK94VJ4aESLz+bdk4qvUzOKlozmMvETkiOJKj1Ml+dvs9CFzxkgirVtq0AuxGVyJmAaboTKggoG9MhtDX1qAuqG81+mZqnWumbA1/q8tCcqb8nIuoqNXEd3Rlfrha9WPzPa4c4KHcj7gUhgsfmiwahMNE342DMPpfAUEw0oUxyfavJRlRShjq+tA7BXnx5mTRKRfu8WLq5yFXLSRwpckyyJE9sckmq5JrUSJ0w8kieySt5M56MF+Pd+Ji3rhjJzBH5A+PzB83kmjM=</latexit>

reduceg,↵ :<latexit sha1_base64="+I33AsY0zFBAtOQjlbwSpL0JEAQ=">AAACBnicbVDLSgNBEJyNrxhfqx5FWA2CBwm7UTB4CnjxGME8IBvD7KSTDJl9MNMrhGVPXvwVLx4U8eo3ePNvnE1y0MSChqKqm+4uLxJcoW1/G7ml5ZXVtfx6YWNza3vH3N1rqDCWDOosFKFseVSB4AHUkaOAViSB+p6Apje6zvzmA0jFw+AOxxF0fDoIeJ8zilrqmoeuT3GImEjoxQzuk8GZS0U0pGnqHl11zaJdsiewFokzI0UyQ61rfrm9kMU+BMgEVart2BF2EiqRMwFpwY0VRJSN6ADamgbUB9VJJm+k1olWelY/lLoCtCbq74mE+kqNfU93ZkereS8T//PaMfYrnYQHUYwQsOmifiwsDK0sE6vHJTAUY00ok1zfarEhlZShTq6gQ3DmX14kjXLJOS+Vby+K1cosjjw5IMfklDjkklTJDamROmHkkTyTV/JmPBkvxrvxMW3NGbOZffIHxucPmSaZJw==</latexit>

Figure 5: Example rule schema application

(2) choose a match, i.e. a morphism g : Lg,α ↪→ G that satisfies the dangling condi-
tion with respect to rg,α : 〈Lg,α ←↩ K ↪→ Rg,α〉 and for which Γg,α = true; (3) apply
rg,α with match g. If a graph H with comatch h : Rg,α ↪→ H is derived from G via
these steps, we write G ⇒r,g,h (or just G ⇒r H). Moreover, if a graph H can be
derived from a graph G via some r in a set of rule schemata R, we write G ⇒R H
(i.e. nondeterministic choice of rule schema). If no rule schema in the set has a
match for G, we write G ;R, i.e. that R fails on G.

Example 2.12 (Rule schema application). The left-hand side, interface, and right-
hand side of a rule schemata reduce are depicted in the top row of Figure 5. In-
tuitively, the rule schema matches three adjacent nodes such that: (1) the labels
consist of any list components; (2) the nodes/edges are unmarked; (3) the middle
node is rooted, and not incident to any edges other than those in the match. The
rule schema deletes the middle node, then adds an edge between the others la-
belled with the indegree of node 1 in the match. Finally, node 1 is set as a rooted
node, and node 2 is relabelled with the value of x.

The second row depicts a concrete rule instantiated from reduce with respect
to a match g and assignment α. Here, indeg(1)g,α = 1, α(a) = 8, α(b) = 3,
α(x) = 8 :8, α(y) = 5, and α(z) = ‘!′.

The bottom row shows the application of reduceg,α to a graph in the double-
pushout approach with relabelling [30].
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Program ::= Declaration { Declaration }
Declaration ::= MainDecl | ProcedureDecl | RuleDecl
MainDecl ::= Main ‘=’ CommandSeq
ProcedureDecl ::= ProcedureID ‘=’ [ ‘[’ LocalDecl ‘]’ ] CommandSeq
LocalDecl ::= ( RuleDecl | ProcedureDecl ) { LocalDecl }
CommandSeq ::= Command {‘;’Command}
Command ::= Block

| if Block then Block [ else Block ]
| try Block [ then Block ] [ else Block ]

Block ::= ‘(’ CommandSeq ‘)’ [‘!’]
| SimpleCommand
| Block or Block

SimpleCommand ::= RuleSetCall [‘!’]
| ProcedureCall [‘!’]
| break
| skip
| fail

RuleSetCall ::= RuleID | ‘{’ [ RuleID { ‘,’ RuleID } ] ‘}’
ProcedureCall ::= ProcedureID

Figure 6: GP 2 Program Syntax

2.3. Programs
GP 2 provides a number of control constructs that allow for rule schemata to

be applied to inputs (host graphs) programmatically. Figure 6 provides an abstract
syntax of these graph programs. We shall explain the main constructs informally,
before presenting a structural operational semantics that we will use as the basis
for our soundness proofs.

Intuitively, a RuleSetCall, typically denoted by R, represents a single nonde-
terministic application of one of the conditional rule schemata in R. This results in
failure if none of the rules are applicable to the current host graph, i.e. no matches
are possible. The program P; Q denotes sequential composition. The program
if C then P else Q denotes conditional branching: if the execution of C on an
input results in a graph, then P is executed on that original input graph; other-
wise, if C fails, then Q is executed instead. (The try construct operates similarly,
except that the effects of C are retained.) The program P! denotes as-long-as-
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Figure 7: A cycle graph

Main = init; Reduce

Reduce = red3!; {red2, red1}
init(x:list) red1(a,x:list)

x ⇒ x
1 1

x ⇒ ∅a

red2(a,b,x,y:list) red3(a,b,x,y,z:list)

x y ⇒ ∅
a
b x y z ⇒ x z

1 2 1 2

a b a

Figure 8: GP 2 program is-cycle-buggy

possible iteration of P, in which the iteration terminates the moment that a step
of P is not applicable to the graph (note that the overall iteration P! can never
fail). The command break is used to exit such an iteration. Finally, skip is a
null-command (i.e. the rule schema 〈∅ ⇒ ∅, true〉), and fail results in failure.

Example 2.13 (Graph program). A cycle graph is an unmarked and unrooted
host graph consisting of n nodes and n edges, n ≥ 1, which form a directed cycle.
See Figure 7 for an example. The program is-cycle-buggy in Figure 8 is meant
to recognise whether an input graph is a cycle graph or not, by reducing cycle
graphs to the empty graph. (The program has a bug affecting a specific type of
input that we will discuss in Section 5.)

The program runs as follows. First, init nondeterministically transforms a
single non-rooted node into a rooted node. (Intuitively, this makes the subse-
quent rule applications more efficient as the rule-matching can be done in the
local neighbourhood of the rooted node.) Second, the reduction rule red3 is ap-
plied for as long as possible. The key to this rule is the dangling condition: the
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rooted node in the middle can only be removed if there are no other edges incident
to it. Finally, the program attempts to apply exactly one more reduction: either
red2, which reduces a cycle graph consisting of two nodes, or red1, which deals
with the special case of a single-node cycle graph (zero iterations of red3 would
have been applied to such an input).

Executing this program on the graph of Figure 7 results in the empty graph.

The semantics of GP 2 program constructs are given in the style of a structural
operational semantics [31]. In this approach, we inductively define small-step
transitions → on configurations, which are either command sequences together
with a host graph, just a host graph, or the special element fail:

→ ⊆ (CommandSeq × G(L)) × ((CommandSeq × G(L)) ∪ G(L) ∪ fail)

Configurations in CommandSeq×G(L) represent unfinished computations, whereas
graphs in G(L) and the special element fail are terminal states that represent fin-
ished computations.

Figure 9 shows the inference rules for the core commands of GP 2. The in-
ference rules contain meta-variables for command sequences and graphs, where
R stands for a call of a rule schema set, C, P, P′,Q stand for command sequences,
and G,H for host graphs in G(L). The transitive and reflexive-transitive closures
of→ are written→+ and→∗ respectively.

The inference rules for the remaining GP 2 commands are given in Figure 10.
We call these derived commands because there are equivalent combinations of
core commands that can define them.

The meaning of GP 2 programs are summarised by binary semantic relations.
We associate each program P with two semantic relations: ~P�ok and ~P�fa, where
are ok and f a are exit statuses. A pair of host graphs (G,H) is in ~P�ok if an
execution of P on G can result in H. A pair of host graphs (G,H) is in ~P�fa,
however, if executing P on G can result in failure (with H the last graph derived
before failure occurred). Note that if a program P fails immediately on G, then
(G,G) ∈ ~P�fa.

Definition 2.14 (Semantics). The semantics of a graph program P is given by
binary relations ~P�ε ⊆ G(L)×G(L), where (G,H) ∈ ~P�ok if there is a sequence
of configurations 〈P,G〉 →+ H, and (G,H) ∈ ~P�fa if there is a sequence of
configurations 〈P,G〉 →∗ 〈P′,H〉 → fail.
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[call1] G ⇒R H
〈R, G〉 → H [call2] G 6⇒R

〈R, G〉 → fail

[seq1] 〈P, G〉 → 〈P′, H〉
〈P; Q, G〉 → 〈P′; Q, H〉 [seq2] 〈P, G〉 → H

〈P; Q, G〉 → 〈Q, H〉

[seq3] 〈P, G〉 → fail
〈P; Q, G〉 → fail

[if1] 〈C, G〉 →+ H
〈if C then P else Q, G〉 → 〈P, G〉

[if2] 〈C, G〉 →+ fail
〈if C then P else Q, G〉 → 〈Q, G〉

[try1] 〈C, G〉 →+ H
〈try C then P else Q, G〉 → 〈P, H〉

[try2] 〈C, G〉 →+ fail
〈try C then P else Q, G〉 → 〈Q, G〉

[alap1] 〈P, G〉 →+ H
〈P!, G〉 → 〈P!, H〉 [alap2] 〈P, G〉 →+ fail

〈P!, G〉 → G

[alap3] 〈P, G〉 →∗ 〈break,H〉
〈P!, G〉 → H [break] 〈break; P, G〉 → 〈break, G〉

Figure 9: Inference rules for core commands

[or1] 〈P or Q, G〉 → 〈P, G〉 [or2] 〈P or Q, G〉 → 〈Q, G〉
[skip] 〈skip, G〉 → G [fail] 〈fail, G〉 → fail

[if3] 〈if C then P, G〉 → 〈if C then P else skip, G〉
[try3] 〈try C then P, G〉 → 〈try C then P else skip, G〉
[try4] 〈try C else P, G〉 → 〈try C then skip else P, G〉
[try5] 〈try C, G〉 → 〈try C then skip else skip, G〉

Figure 10: Inference rules for derived commands

Note that divergence is treated in an implicit way: a program that always
diverges is associated with empty relations. For example, ~〈∅ ⇒ ∅〉!�ok = ∅.

The purpose of defining two semantic relations is to allow for sound under-
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approximate proofs about both the executions that result in graphs and those that
(at some point, but perhaps not immediately) result in failure. Semantically,
graphs and fail are both considered proper outcomes of a program execution.
However, if we model more of the GP 2 runtime, then we could also define se-
mantic relations for tracking improper exit statuses (e.g. division by zero).

3. An Under-Approximate Program Logic

In this section, we present our under-approximate program logic for GP 2 in
an extensional style, i.e. independent of any fixed assertion language. Instead of
concrete assertions (e.g. in a first-order logic), we use semantic characterisations,
which allows us to separate incompleteness due to the proof rules from incom-
pleteness due to the assertion language (e.g. the assertion language of Section 4).
We begin by defining what is meant by an assertion language, as well as some key
semantic characterisations for our proof rules: SE, characterising the existence of
a successful execution; and FE, characterising the existence of a failing execution.

Definition 3.1 (Assertion language). An assertion language is a pair A = 〈A, |=A
〉, where A is a (possibly infinite) set of assertions, and |=A ⊆ G(L) × A is a sat-
isfaction relation. We say that a graph G ∈ G(L) satisfies an assertion c ∈ A,
denoted G |=A c, if (G, c) ∈ |=A.

Definition 3.2 (Extensional assertion false). Let A = 〈A, |=A〉 denote an asser-
tion language, P a graph program, and c an assertion in A. We denote by false
any assertion in A that expresses a property that cannot be satisfied by any graph,
i.e. ¬∃G. G |=A false.

Definition 3.3 (Extensional assertion SE). Let A = 〈A, |=A〉 denote an assertion
language, P a graph program, and c an assertion in A. We denote by SE[P, c] any
assertion in A that expresses the weakest property for a successful execution of P
to exist on a graph satisfying c, i.e. such that for any graph G ∈ G(L),

G |=A SE[P, c] if and only if (G |=A c and ∃H. (G,H) ∈ ~P�ok) .

Definition 3.4 (Extensional assertion FE). Let A = 〈A, |=A〉 denote an assertion
language, P a graph program, and c an assertion in A. We denote by FE[P, c] any
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assertion in A that expresses the weakest property for a failing execution of P to
exist on a graph satisfying c, i.e. such that for any graph G ∈ G(L),

G |=A FE[P, c] if and only if
(
G |=A c and ∃H. (G,H) ∈ ~P� f a

)
.

Before we define the proof rules of our incorrectness logic, it is important to
define what an incorrectness specification is and what it means for it to be valid.
In over-approximate program logics (e.g. [12, 13]) a specification is given in the
form of a triple, {c}P{d}, which under partial correctness expresses that if a graph
satisfies precondition c, and program P successfully terminates on it, then the
resulting graph will always satisfy d. The postcondition d over-approximates the
graphs reachable upon termination of P from graphs satisfying c.

Incorrectness logic [15], however, is based on under-approximate reasoning,
for which a specification [c]P[d] has a rather different meaning (and thus a dif-
ferent notation). Here, we call the pre-assertion c a presumption and the post-
assertion d a result. The triple specifies that if a graph satisfies d, then it can be
derived from some graph satisfying c by executing P on it. In other words, d
under-approximates the states reached as a result of executing P on graphs satis-
fying c. It does not specify that every graph satisfying c derives a graph satisfying
d, and it does not preclude graphs satisfying ¬c from deriving such graphs either.

The principal benefit of proving such triples is then proving the presence of
graphs, and can be thought of as providing a possible formal foundation for static
bug catchers, e.g. symbolic execution tools. In graph programs, this amounts to
formal proofs of the presence of illegal graph structure, but it can also facilitate
proofs of the presence of failure. To accommodate this, we adopt O’Hearn’s ap-
proach [15] of tracking exit statuses ε in the result, [c]P[ε :d], using ok to represent
executions that result in a graph, and f a to track executions that fail.

This under-approximate style of reasoning occasionally requires us to specify
the weakest postcondition relative to a presumption c and program P. In contrast
to the more familiar weakest precondition, a weakest postcondition specifies the
most general property that a graph H must satisfy to guarantee the existence of
a pre-state G that satisfies c and can be transformed into H via P. Note that this
is essentially a reachability property, as it guarantees the existence of at least one
such execution (rather than guaranteeing properties of all of them).

Definition 3.5 (Extensional weakest postcondition). Let A = 〈A, |=A〉 denote an
assertion language, P a graph program, and c an assertion in A. We denote by
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RuleSetSucc ` [SE[R, c]] R [ok : WPOSTok[R, c]][ f a : false]

RuleSetFail ` [FE[R, c]] R [ok : false][ f a : FE[R, c]]

Skip ` [c] skip [ok : c][ f a : false]

Fail ` [c] fail [ok : false][ f a : c]

IterZero ` [FE[P, c]] P! [ok : FE[P, c]][ f a : false]

Figure 11: Extensional incorrectness axioms for graph programs

WPOSTε[P, c] any assertion in A that is a weakest postcondition relative to c, P,
and ε, i.e. such that for any graph H ∈ G(L),

H |=A WPOSTε[P, c] if and only if (∃G. G |=A c and (G,H) ∈ ~P�ε) .

Definition 3.6 (Under-approximate validity). Let c, d denote assertions from an
assertion language A = 〈a, |=A〉, P a graph program, and ε an exit status. A
specification [c] P [ε : d] is valid, denoted |= [c] P [ε : d], if for every graph
H ∈ G(L) such that H |=A d, there exists a graph G ∈ G(L) such that G |=A c and
(G,H) ∈ ~P�ε.

Figures 11 and 12 present the axioms and proof rules of our incorrectness logic
for GP 2, which are adapted from O’Hearn’s incorrectness logic for imperative
programs [15]. We say that a triple is provable, denoted ` [c]P[ε : d], if it can be
instantiated from any axiom, or deduced as the consequent of any proof rule with
provable antecedents. We use the notation ` [c]P[ok : d1][ f a : d2] as shorthand
for two separate triples, ` [c]P[ok : d1] and ` [c]P[ f a : d2].

The axioms RuleSetSucc and RuleSetFail allow for reasoning about the most
fundamental unit of graph programs: rule schemata set application. The former
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covers the successful case: if a graph satisfies the weakest postcondition relative to
c and R, then it can be derived from a graph satisfying the presumption SE[R, c],
i.e. which expresses that there is an applicable application of R on a graph satis-
fying c. The latter of the axioms covers the possibility that R cannot be applied:
in this case, we have an exit condition of f a to track its failure.

The axiom Skip reflects that the program state (i.e. host graph) does not change
and that the command cannot fail. The axiom Fail, on the other hand, reflects that
the command’s execution cannot result in a graph, but rather instantly transitions
the execution to fail: whatever condition held in the pre-state is tracked as the last
condition to be satisfied before the failure occurred. The final axiom, IterZero,
covers the case when the iterated program immediately fails in the first iteration.
This means that the pre-state already had the conditions for a failing execution of
P, and as no iteration of P was able to complete, the post-state still retains this.
(Note how P! itself can never fail.)

Sequential composition is handled by the proof rules SeqSucc as well as Seq-
Fail, with the latter covering the possibility of the first program resulting in failure.
The conditional constructs are covered by IfElse and TryElse: note that failure
can only result from failure in the two branches, and not from the guard C, which
is simply tested to choose the branch (with the effects of C being retained only by
try). The proof rule Choice covers a derived GP 2 command that nondeterminis-
tically chooses one of two programs to execute. Note that the previous three proof
rules only require one of the antecedents to be proved.

It is important to highlight the rule of consequence, Cons, as the implications
in the side conditions are reversed from those of the corresponding Hoare logic
rule [32, 19]. In incorrectness logic, we instead weaken the precondition and
strengthen the postcondition. Intuitively, this allows us to soundly drop disjuncts
in the result and thus reason about fewer paths in the post-state, which may support
better scalability in tools [15].

The proof rule IterVar expresses a triple over parameterised assertions, i.e. func-
tions mapping natural numbers to assertions in the language. The idea of the rule
is to prove a ‘backwards variant’ of a single iteration of P, i.e. with respect to de-
creasing natural numbers in the parameters of the assertions. With this backwards
variant proved, one can conclude that if a graph satisfies some c(n), then it can be
derived by some graph satisfying c(0).

The Break rule is similar to IterVar, except that one must prove that there
is an execution of P that ends with the command break. The ad hoc condition
in the proof rule requires one to unfold the final iteration of P into a sequence of
commands Q followed by the command break.
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` [c] P [ok : e] ` [e] Q [ε : d]
SeqSucc ` [c] P; Q [ε : d]

` [c] P [ f a : d]
SeqFail ` [c] P; Q [ f a : d]

` [SE[C, c]] P [ε : d] or ` [FE[C, c]] Q [ε : d]
IfElse ` [c] if C then P else Q [ε : d]

` [SE[C, c]] C; P [ε : d] or ` [FE[C, c]] Q [ε : d]
TryElse ` [c] try C then P else Q [ε : d]

` [c] P [ε : d] or ` [c] Q [ε : d]
Choice ` [c] P or Q [ε : d]

c⇐= c′ ` [c′] P [ε : d′] d′ ⇐= d
Cons ` [c] P [ε : d]

` [c(i − 1)] P [ok : c(i)] for all i : N
IterVar ` [c(0)] P! [ok : ∃n : N0. FE[P, c(n)]]

∃n : N0. ` [c(i − 1)] P [ok : c(i)] for i ≤ n : N and ` [c(n)] Q [ok : d] for Q; break ‘in’ P
Break ` [c(0)] P! [ok : d]

Figure 12: Extensional incorrectness proof rules for graph programs

The provability of a triple can be shown in a number of different ways. In this
paper, we will visualise them using proof trees, in which the triple to prove is the
root, the instantiations of axioms are the leafs, and applications of proof rules are
everything in-between.

Example 3.7 (Proof tree). Figure 13 depicts an example proof tree for the graph
program of Example 2.13. This proof tree is given independently of any particular
assertion language or assertions. In fact, this proof tree can be instantiated to prove
any triple ` [c] init; Reduce [ok : d] so long as the various side conditions of the
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` [SE[init, c]] init; [ok : WPOSTok[init, c]]
` [c] init; [ok : g]

(see sub-tree below)
` [g] Reduce [ok : d]

` [c] init; Reduce [ok : d]

` [SE[red3, f (i − 1)]] red3 [ok : WPOST[red3, f (i − 1)]]
` [ f (i − 1)] red3 [ok : f (i)]

` [ f (0)] red3! [ok : ∃n : N0. f (n)]
` [g] red3! [ok : e]

` [SE[R, e]] R [ok : WPOSTok[R, e]]
` [e] R [ok : d]

` [g] Reduce [ok : d]

Figure 13: Proof tree for Example 2.13 (R = {red2, red1}) using extensional assertions

proof rules hold. For example, it must be the case that d implies WPOSTok[R, e],
e implies ∃n : N0. f (n), and that f (0) implies g (among other implications) with
respect to the semantics of the assertion language.

(Proof trees with a specific assertion language are explored in Section 5.)

Soundness means that any triple provable in our logic is valid in the sense of
Definition 3.6, i.e. that graphs satisfying the result are reachable from some graph
satisfying the presumption.

Theorem 3.8 (Soundness). Let A denote an assertion language. For all assertions
c, d in A, graph programs P, and exit statuses ε,

` [c] P [ε : d] implies |= [c] P [ε : d].

Proof. Given ` [c]P[ε : d], we need to show that |= [c]P[ε : d]. We consider each
axiom and proof rule in turn and proceed by induction on proofs.

RuleSetSucc. Suppose H |=A WPOSTok[R, c]. By the definition of WPOST,
there exists a graph G such that G |=A c and (G,H) ∈ ~R�ok. By the definition of
SE, G |=A SE[R, c]. It follows that |= [SE[R, c]]R[ok : WPOSTok[R, c]].

RuleSetFail. Suppose H |=A FE[R, c]. By the definition of FE, H |=A c,
and there exists a graph H′ such (H,H′) ∈ ~R� f a. There exists a sequence of
configurations 〈R,H〉 →∗ 〈R,H′〉 → fail. By Figure 9, the sequence consists of a
single step, G ;R, H′ = H, and 〈R,H〉 → fail. Together, (H,H) ∈ ~R� f a, and so
it follows that |= [FE[R, c]]R[ f a : FE[R, c]].

Skip, Fail. Immediate from the semantic rules [skip], [fail], and the definition
of |=.
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IterZero. For every graph H.H |=A FE[P, c], by the definition of FE, H |=A c,
and there exists some H′.(H,H′) ∈ ~P� f a, and thus a sequence of configurations
〈P,H〉 →+ 〈P,H′〉 → fail. By semantic rule [alap2], 〈P!,H〉 → H and thus
(H,H) ∈ ~P!�ok. Together, we get the result that |= [FE[P, c]]P![ok : FE[P, c]].

SeqSucc. Suppose that ` [c]P; Q[ok : d]. By induction, we have |= [c]P[ok :
e] and |= [e]Q[ok : d]. By definition of |=, for all H.H |=A d, there exists a
G′.G′ |=A e with (G′,H) ∈ ~Q�ok, i.e. 〈Q,G′〉 →+ G. Furthermore, for all
G′.G′ |=A e, there exists a G.G |=A c with (G,G′) ∈ ~P�ok, i.e. 〈P,G〉 →+ G′.
By semantic rules [seq1], [seq2], 〈P; Q,G〉 →+ 〈Q,G′〉 →+ H, and thus (G,H) ∈
~P; Q�ok. It follows that |= [c]P; Q[ok : d]. Analogous for case ` [c]P; Q[ f a : d].

SeqFail. Suppose that ` [c]P; Q[ f a : d]. By induction, we have |= [c]P[ f a :
d]. For all H.H |=A d, there exists a G.G |=A c with (G,H) ∈ ~P� f a, and thus a
sequence of configurations 〈P,G〉 →+ 〈P′,H〉 → fail. By semantic rules [seq1]
and [seq3], 〈P; Q,G〉 →+ 〈P′; Q,H〉 → fail, i.e. (G,H) ∈ ~P; Q� f a. It follows that
|= [c]P; Q[ f a : d].

IfElse. Suppose that ` [c]if C then P else Q[ε : d]. By induction,
|= [SE[C, c]]P[ε : d] or |= [FE[C, c]]Q[ε : d]. For all H.H |=A d, there ex-
ists a graph G that satisfies SE[C, c] or FE[C, c], and (G,H) ∈ ~P�ε or (G,H) ∈
~Q�ε respectively. By the definition of SE and FE, there exists a graph H′ such
that (G,H′) ∈ ~C�ok or (G,H′) ∈ ~C� f a, and thus a sequence of configurations
〈C,G〉 →+ H′ or 〈C,G〉 →+ 〈C′,H′〉 → fail. By semantic rules [if1] or [if2],
〈if C then P else Q,G〉 → 〈P,G〉 or 〈if C then P else Q,G〉 → 〈Q,G〉.
Together, we have (G,H) ∈ ~if C then P else Q�ε , and thus the result that
|= [c]if C then P else Q[ε : d].

TryElse, Choice. The proofs follow a similar structure to that for IfElse.
Cons. Suppose that ` [c]P[ε : d]. By induction, we have |= [c′]P[ε : d′],

|= d =⇒ d′, and |= c′ =⇒ c. For all graphs H.H |=A d, H also satisfies d′, and thus
there exists a graph G.G |=A c′ such that (G,H) ∈ ~P�ε . By assumption, G |=A c,
and thus |= [c]P[ε : d].

IterVar. Suppose that ` [c(0)]P![ok : ∃n : N0.FE[P, c(n)]]. If n = 0, we
are done (see the proof of IterZero). Otherwise, by induction we have |= [c(n −
1)]P[ok : c(n)]. If n − 1 = 0, we are done, otherwise, by induction we have
|= [c(n − 2)]P[ok : c(n − 1)], and the process repeats for a finite number of steps
until a pre-state satisfying c(0) is obtained. Result obtained using the semantic
rules [alap1], [alap2], and the definition of |=.

Break. Suppose that ` [c(0)]P![ok : d]. By induction, there exists some
natural n such that |= [c(n)]Q[ok : d], i.e. for all graphs H.H |=A d, there exists
a graph G′.G′ |=A c(n) and (G′,H) ∈ ~Q�ok. Here, Q is a command sequence
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derived from P that is followed by the command break. If n = 0, then the result
is obtained using semantic rule [alap3]. If n − 1 = 0, we get the result by the
assumption that |= [c(i− 1)]P[ok : c(i)]. Otherwise, the process repeats for a finite
number of steps until a pre-state satisfying c(0) is obtained (as per IterVar).

Completeness is the other side of the coin: it means that any valid triple can
be proven using our logic. As is typical, we prove relative completeness [33]
in which completeness is relative to the existence of an oracle for deciding the
validity of assertions (such as the implications in Cons). The idea is to separate
incompleteness due to the incorrectness logic from incompleteness in deducing
valid assertions, and thus determine that no proof rules are missing.

Theorem 3.9 (Relative completeness). Let A denote an assertion language. For
all assertions c, d in A, graph programs P, and exit statuses ε,

|= [c] P [ε : d] implies ` [c] P [ε : d].

Proof. We prove relative completeness by showing that for every program P (con-
sisting of core commands), extensional assertion c, and exit status ε ∈ {ok, f a},
` [c]P[ε : WPOSTε[P, c]]. Relative completeness is obtained by applying the rule
of consequence to ` [c]P[ε : WPOSTε[P, c]].

Rule Application (ε = ok). Immediate from RuleSetSucc and Cons.
Rule Application (ε = f a). Immediate from RuleSetFail, the definition of

~R� f a, and Cons.
Sequential Composition (ε = ok). In this case,

H |=A WPOSTok[P; Q, c]
iff ∃G.G |=A c and (G,H) ∈ ~P; Q�ok

iff ∃G,G′.G |=A c, (G,G′) ∈ ~P�ok, and (G′,H) ∈ ~Q�ok

iff ∃G′.G′ |=A WPOSTok[P, c] and (G′,H) ∈ ~Q�ok

iff H |=A WPOSTok[Q,WPOSTok[P, c]]

By induction we have ` [WPOSTok[P, c]]Q[ok : WPOSTok[Q,WPOSTok[P, c]]]
and ` [c]P[ok : WPOSTok[P, c]]. By SeqSucc we derive the triple ` [c]P; Q[ok :
WPOSTok[Q,WPOSTok[P, c]]], and by Cons ` [c]P; Q[ok : WPOSTok[P; Q, c]].
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Sequential Composition (ε = f a). In this case,

H |=A WPOST f a[P; Q, c]
iff ∃G.G |=A c and (G,H) ∈ ~P; Q� f a

iff ∃G.G |=A c and ((G,H) ∈ ~P� f a)
or (∃G′.(G,G′) ∈ ~P�ok and (G′,H) ∈ ~Q� f a)

iff H |=A WPOST f a[P, c]
or H |=A WPOST f a[Q,WPOSTok[P,C]]

If H |=A WPOST f a[P, c], then by induction we have ` [c]P[ f a : WPOST f a[P, c]],
and by SeqFail derive ` [c]P; Q[ f a : WPOST f a[P, c]]. With Cons we get `
[c]P; Q[ f a : WPOST f a[P; Q, c]].

If H |=A WPOST f a[Q,WPOSTok[P,C]], then by induction we get the triple
` [WPOSTok[P,C]]Q[ f a : WPOST f a[Q,WPOSTok[P,C]]] as well as the triple
` [c]P[ok : WPOSTok[P,C]]. By SeqSucc, we can derive the triple ` [c]P; Q[ f a :
WPOST f a[Q,WPOSTok[P,C]]]. With Cons we get the result ` [c]P; Q[ f a :
WPOST f a[P; Q, c]].

If-then-else. In this case,

H |=A WPOSTok[if C then P else Q, c]
iff ∃G.G |=A c and (G,H) ∈ ~if C then P else Q�ok

iff ∃G.G |=A c and (∃H′.(G,H′) ∈ ~C�ok and (G,H) ∈ ~P�ok)
or (∃H′.(G,H′) ∈ ~C� f a and (G,H) ∈ ~Q�ok)

iff H |=A WPOSTok[P,SE[C, c]] or H |=A WPOSTok[Q,FE[C, c]]

If H |=A WPOSTok[P,SE[C, c]], then by induction we have ` [SE[C, c]]P[ok :
WPOSTok[P,SE[C, c]]]. Using IfElse we derive ` [c]if C then P else Q[ok :
WPOSTok[P,SE[C, c]]]. With Conswe get the result ` [c]ifC then P elseQ[ok :
WPOSTok[if C then P else Q, c]]. (Case H |=A WPOSTok[Q,FE[C, c]] analo-
gous.)

Try-then-else. Analogous to the if-then-else case.
Iteration. Define c(i) = WPOSTok[P, c(i − 1)] for all i > 0. Then, for break-
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free executions of P!,

H |=A WPOSTok[P!, c(0)]
iff ∃G0.G0 |=A c(0) and (G0,H) ∈ ~P!�ok

iff ∃G0.G0 |=A c(0) and (G0,H) ∈ ~P!�ok and (H,H) ∈ ~P� f a

iff ∃G0.G0 |=A c(0) and ∃n : N0.∃G1, . . .Gn.(Gi−1,Gi) ∈ ~P�ok for all 0 < i ≤ n
and Gn = H and (H,H) ∈ ~P� f a

iff H |=A ∃n : N0.FE[P, c(n)]

By induction, ` [c(i − 1)]P[ok : WPOSTok[P, c(i − 1)]] and thus ` [c(i − 1)]P[ok :
c(i)]. By IterVar and Cons we get the result ` [c(0)]P![ok : WPOSTok[P!, c(0)]].

For executions of P! that terminate with Q; break,

H |=A WPOSTok[P!, c(0)]
iff ∃G0.G0 |=A c(0) and (G0,H) ∈ ~P!�ok

iff ∃G0.G0 |=A c(0) and ∃n : N0.∃G1, . . .Gn.(Gi−1,Gi) ∈ ~P�ok for all 0 < i ≤ n
and (Gn,H) ∈ ~Q�ok

iff H |=A ∃n : N0.WPOSTok[Q, c(n)]

By induction, ` [c(i − 1)]P[ok : c(n)] and ` [c(n)]Q[ok : WPOSTok[Q, c(n)]]. By
Break and Cons we derive the result that ` [c]P![ok : WPOSTok[P!, c(0)].

4. Verifying Monadic Second-Order Graph Properties

The extensional style of our under-approximate calculi allowed us to study
proof rules for the constructs of graph programs in isolation from issues associ-
ated with particular assertion languages, such as inexpressiveness. For the calculi
to be usable in verification tasks, they must of course be instantiated with an as-
sertion language. In choosing a suitable formalism for this purpose, we aim to
satisfy a number of requirements: that the language (1) can specify a broad class
of properties about graphs labelled over an infinite label alphabet; (2) supports
formal, logical reasoning; (3) has a decision procedure for model checking; and
(4) is equipped with applicability and weakest postcondition constructions.

We propose monadic second-order nested conditions with expressions (or ME-
conditions for short) as an assertion language that satisfies these requirements.
ME-conditions are visual and based on morphisms, allowing for properties to be
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specified and reasoned about at the same level of abstraction as rule schemata and
graphs. Equivalently expressive to monadic second-order logic on graphs, ME-
conditions can specify non-local structural properties (e.g. the graph is connected,
is bipartite, has an arbitrary-length path between two nodes) in conjunction with
properties involving label expressions (e.g. every edge is labelled with the sum
of its integer-labelled incident nodes). ME-conditions unify several previously
proposed morphism-based assertion languages into a single formalism: nested
conditions [7], for specifying local structure; M-conditions [25], for specifying
non-local structure; and E-conditions [13], for specifying properties over infinite
label alphabets.

4.1. MSO Conditions with Expressions
We begin by defining the syntax of ME-conditions, which are over graphs in

G(RG), as well as the semantics, which are with respect to graphs and morphisms
over G(L).

Similar to rule schemata, these ME-conditions can constrain the potential as-
signments of variables using assignment constraints. These differ slightly from
the constraints of rule schemata as they include predicates over monadic second-
order set variables (i.e. sets of nodes or sets of edges). This also requires us to
extend the definition of assignment to encompass these new types of variables.

Definition 4.1 (Assignments). Let G ∈ G(L) denote a graph. An assignment for
G is a family of partial functions α = (αX)X∈{L,V,E} where αL is a list assignment,
αV : VSetVar→ 2VG , and αE : VSetVar→ 2EG .

For notational convenience, we will omit the subscript in assignments when
the context is unambiguous.

Definition 4.2 (Assignment constraint). An assignment constraint γ is a Boolean
expression that can be derived from AssCon in the grammar of Figure 14.

Note that Integer has been extended with integer expressions of the form i =

card(X) with X in VSetVar or ESetVar. Here, card represents the cardinality
function, the value of which (with respect to an assignment α) is simply |α(X)|.

Given an assignment constraint γ, a morphism g with codomain G, and an
assignment α, the value of γg,α in B is defined inductively. If γ has the form x ∈ X
with x a node/edge identifier and X a node/edge set variable, then γg,α is true if
g(x) ∈ α(X). If γ has the form path(v,w) with v,w node identifiers, then γg,α
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AssCon ::= List (’=’ | ’!=’) List | Integer IntRel Integer | Type ’(’ List ’)’
| Node ’∈’ (VSetVar | ’{}’ | ’{’ Node {’,’ Node } ’}’)
| Edge ’∈’ (ESetVar | ’{}’ | ’{’ Edge {’,’ Edge } ’}’)
| path ’(’ Node ’,’ Node [’,’ not Edge {’|’ Edge}] ’)’

IntRel ::= ’>’ | ’>=’ | ’<’ | ’<=’
Type ::= int | char | string | atom
Integer ::= IVar | [‘-’] Digit {Digit} | ‘(’Integer‘)’ |

Integer (‘+’ | ‘-’ | ‘∗’ | ‘/’) Integer |
(indeg | outdeg) ‘(’Node‘)’ |
length ‘(’(LVar | AVar | SVar)‘)’
card ‘(’(VSetVar | ESetVar)‘)’

Figure 14: Abstract syntax of assignment constraints

is true if pathG(g(v), g(w), ∅) holds. If γ has the form path(v,w,not e1| . . . |en)

with v,w node identifiers and each ei an edge identifier, then γg,α is true if the path
predicate pathG(g(v), g(w), {g(e1), . . . , g(en)}) holds. (Other cases are analogous to
those for rule schema conditions.)

Definition 4.3 (ME-condition). Let P denote a graph in G(RG). An MSO condi-
tion with expressions (short. ME-condition) over P is of the form true, γ, ∃Lx.c,
∃VX.c, ∃EX.c, or ∃a.c′, where γ is an assignment constraint, x is a variable in LVar,
X is a variable in VSetVar (resp. ESetVar), c is a ME-condition over P, a : P ↪→ C
is an injective graph morphism over G(RG), and c′ is a ME-condition over C.
Moreover, ¬c1, c1 ∧ c2, and c1 ∨ c2 are ME-conditions over P if c1, c2 are ME-
conditions over P.

The free variables of a ME-condition c, denoted FV(c), are those variables
present in labels and assignment constraints that are not bound by any variable
quantifier (defined in the standard way). If c is defined over the empty graph
∅ and FV(c) = ∅, we call c a ME-constraint. Furthermore, a mapping of free
variables to expressions and node/edge sets σ = (x1 7→ e1, · · · , X1 7→ V1, · · · ) is
called a substitution, and cσ denotes the ME-condition c but with all free variables
x substituted for σ(x).

Definition 4.4 (Satisfaction of ME-conditions). Let c denote a ME-condition over
P, α an assignment constraint with dom(α) = FV(c), and p : Pα ↪→ G an injective
morphism over G(L). The satisfaction relation p |=α c is defined inductively.
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If c has the form true, then p |=α c always. If c is an assignment constraint
γ, then p |=α c if γp,α = true. If c has the form ∃Lx.c′ where c′ is a ME-condition
over P, then p |=α c if p |=α[x7→l] c′ for some l ∈ L. If c has the form ∃VX.c′ where
c′ is a ME-condition over P, then p |=α c if p |=α[X7→V] c′ for some V ⊆ VG. If c has
the form ∃EX.c′ where c′ is a ME-condition over P, then p |=α c if p |=α[X 7→E] c′ for
some E ⊆ EG.

If c has the form ∃a : P ↪→ C.c′ where c′ is a ME-condition over C, then
p |=α c if there exists an injective morphism q : Cq,α ↪→ G such that q ◦ aq,α = p
and q |=α c′.

,!<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit>

G
<latexit sha1_base64="znlNvdKUuTj8xBn7KQjYldwg35s=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BD3pMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A51DjM8=</latexit>

,!<latexit sha1_base64="7YD8hycuFc2nMaqyiCGHygK5tbE=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyabYNzSZLklXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc38z89gNVmklxbyYJDWI8FCxiBBsr9d1ybyTlWLHhyGCl5GPfrXhVbw60SvycVCBHo+9+9QaSpDEVhnCsddf3EhNkWBlGOJ2WeqmmCSZjPKRdSwWOqQ6y+eFTdGqVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpia6CjImktRQQRaLopQjI9EsBTRgihLDJ5Zgopi9FZERVpgYm1XJhuAvv7xKWrWqf16t3V1U6td5HEU4hhM4Ax8uoQ630IAmEEjhGV7hzXlyXpx352PRWnDymSP4A+fzB3UJk5s=</latexit>

p
<latexit sha1_base64="OdjnM+N0ldtMSmejwmrrhjkZqpM=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUTAalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2b8r1Wh5HAc7hAq7Ag1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4A2GWM7g==</latexit>

=<latexit sha1_base64="JZD9rGyx0wW79/TgBoSwHsfYUZw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGwVyEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5jc2t7Z38bmFv/+DwqHh80tJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+G7ut59QaR7LBzNJ0I/oUPKQM2qs1LjtF0tu2V2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMTVv0pl0lqULLlojAVxMRk/jUZcIXMiIkllClubyVsRBVlxmZTsCF4qy+vk1al7F2VK43rUq2axZGHMziHS/DgBmpwD3VoAgOEZ3iFN+fReXHenY9la87JZk7hD5zPH4sZjLs=</latexit>

q |=↵ c0
<latexit sha1_base64="HMrbASTjOaRrVw/FyV6N4TSc9ow=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovoqiRVsMuCG5cV7AOaWCaTSTt0ZhJnJkII9VfcuFDErR/izr9x2mahrQcuHM65l3vvCRJGlXacb6u0tr6xuVXeruzs7u0f2IdHXRWnEpMOjlks+wFShFFBOppqRvqJJIgHjPSCyfXM7z0SqWgs7nSWEJ+jkaARxUgbaWhXH6DH45Awde8hlowRxGdDu+bUnTngKnELUgMF2kP7ywtjnHIiNGZIqYHrJNrPkdQUMzKteKkiCcITNCIDQwXiRPn5/PgpPDVKCKNYmhIaztXfEzniSmU8MJ0c6bFa9mbif94g1VHTz6lIUk0EXiyKUgZ1DGdJwJBKgjXLDEFYUnMrxGMkEdYmr4oJwV1+eZV0G3X3ot64vay1mkUcZXAMTsA5cMEVaIEb0AYdgEEGnsEreLOerBfr3fpYtJasYqYK/sD6/AHk65Q+</latexit>

P q,↵ ,! Cq,↵
<latexit sha1_base64="0AvKEKScGIAQMsNSbA5sTjdWMf0=">AAACEnicbVDLSgNBEJyNrxhfUY9eBoOgIGE3CuYYyMVjBPOAZA29k9nskNmddWZWCUu+wYu/4sWDIl49efNvnDwOMbGgoajqprvLizlT2rZ/rMzK6tr6RnYzt7W9s7uX3z9oKJFIQutEcCFbHijKWUTrmmlOW7GkEHqcNr1Bdew3H6hUTES3ehhTN4R+xHxGQBupmz+r3aX35x3gcQAj3AmEGEjWDzRIKR5xdc7s5gt20Z4ALxNnRgpohlo3/93pCZKENNKEg1Jtx461m4LUjHA6ynUSRWMgA+jTtqERhFS56eSlET4xSg/7QpqKNJ6o8xMphEoNQ890hqADteiNxf+8dqL9spuyKE40jch0kZ9wrAUe54N7TFKi+dAQIJKZWzEJQALRJsWcCcFZfHmZNEpF56JYurksVMqzOLLoCB2jU+SgK1RB16iG6oigJ/SC3tC79Wy9Wh/W57Q1Y81mDtEfWF+/qpqeEg==</latexit>

aq,↵
<latexit sha1_base64="XxhrUsqX4XzIEE0e5aQFYb6g/d4=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgQcpuFeyx4MVjBfsB3bXMptk2NJuNSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZF0rOtHHdb6ewtr6xuVXcLu3s7u0flA+P2jpJFaEtkvBEdUPQlDNBW4YZTrtSUYhDTjvh+Gbmd56o0iwR92YiaRDDULCIETBW8uEhe7zwgcsRTPvlilt158CrxMtJBeVo9stf/iAhaUyFIRy07nmuNEEGyjDC6bTkp5pKIGMY0p6lAmKqg2x+8xSfWWWAo0TZEgbP1d8TGcRaT+LQdsZgRnrZm4n/eb3URPUgY0KmhgqyWBSlHJsEzwLAA6YoMXxiCRDF7K2YjEABMTamkg3BW355lbRrVe+yWru7qjTqeRxFdIJO0Tny0DVqoFvURC1EkETP6BW9Oanz4rw7H4vWgpPPHKM/cD5/AAJikaI=</latexit>

Finally, the satisfaction of Boolean formulae over ME-conditions is defined in
the standard way.

The satisfaction of ME-constraints by graphs is defined as a special case of
the general definition. That is, a graph G ∈ G(L) satisfies a ME-constraint c,
denoted G |= c, if iG : ∅ ↪→ G |=α∅ c, where α∅ is the empty assignment, i.e. with
dom(α∅) = ∅.

For brevity, we write false for ¬true, c =⇒ d for ¬c ∨ d, ∀x.c for ¬∃x.¬c,
∀a.c for ¬∃a.¬c, and ∃x1, · · · xn.c for ∃x1. · · · ∃xn.c (analogous for ∀ and set
variables X). We also allow sub-type quantifiers such as ∃Ix.c to abbreviate
∃Lx.int(x).c.

Furthermore, if the domain of a morphism can be unambiguously inferred
from the context, we write only the codomain. For example, the ME-constraint
∃∅ ↪→ C. ∃C ↪→ C′. true can be written as ∃C. ∃C′.

Example 4.5 (ME-constraint). Consider the following ME-constraint:

∃Lc, d.∃ c d
v w.path(v,w) ∨ path(w,v)

Intuitively, this expresses that there exists a pair of (unmarked, non-rooted) nodes
labelled with any list component, that are connected by an arbitrary-length path in
either direction.

With the morphism written out in full, the ME-constraint would be:

∃Lc, d.∃∅ ↪→ c d
v w.path(v,w) ∨ path(w,v)
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Theorem 4.6 (Equivalence to MSO on graphs). ME-constraints and monadic
second-order formulas (with cardinality) on graphs [34] are equivalently expres-
sive. That is, given a ME-constraint c, there exists an MSO graph formula ϕ such
that for all graphs G, G |= c if and only if G satisfies ϕ, and vice versa.

Proof. There exist sound translations between the morphisms/expressions of ME-
conditions and first-order logic on graphs (see Chapter §6, [12]), as well as sound
translations between the set variable quantifiers/constraints of ME-conditions and
monadic-second order logic on graphs (see [25]). The result is obtained through a
straightforward combination of these translations.

4.2. Constructing SE and FE
For the remainder of the paper, we utilise ME-constraints together with the

|= relation as our assertion language for conducting proofs. This requires us to
define transformations over ME-conditions and graph programs that produce ME-
constraints characterising the extensional SE, FE, and WPOST assertions from
Figures 11 and 12.

First, we consider ‘App’, which transforms a set of conditional rule schemata
into a ME-constraint that expresses the minimum requirements on a graph for at
least one of the rules to be applicable. Intuitively, the ME-constraint specifies the
presence of a match for a left-hand side, including a morphism that satisfies the
dangling condition. In other words, App(R) can be used to define the extensional
assertions SE and FE with respect to sets of rule schemata. (In general, we can-
not define SE and FE for arbitrary programs, as that would require the assertion
language to be able to decide the halting problem. We remark, however, that this
restriction does not affect the computational completeness of GP 2 [35].)

In order to define App, we utilise two intermediate transformations adapted
from previous work [7, 12]. First, ‘Dang’, which is used to produce a ME-
condition expressing that a morphism satisfies the dangling condition. Second, τ,
which is used to transform a rule schema condition into an assignment constraint.

Lemma 4.7 (Dangling condition). For every morphism L ←↩ K in G(RG), and
every morphism g : Lg,α ↪→ G in G(L),

g |=α Dang(K ↪→ L) if and only if g satisfies the dangling condition for L←↩ K.

Construction. Define Dang(K ↪→ L) =
∧

a∈A ¬∃Lxe, xv.∃a where the index set
A ranges over all injective morphisms (equated up to isomorphic codomains) a :
L ↪→ L⊕ such that the pair 〈K ↪→ L, a〉 has no natural pushout complement and
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K
<latexit sha1_base64="HQfadDQrozr2PpvG928HQmjcOjI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL4KXBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/3iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUmiyMPJ3AK5+DBFVThDmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP6NTjNM=</latexit>

K 0
<latexit sha1_base64="u5KEhSuUTm4PrC0LFLl0DxNrCDE=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPoKexGQY9BL4KXKOYBSQizk95kyOzsMjMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5ceCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItXyqUXCJdcONwFaskIa+wKY/upn6zSdUmkfy0Yxj7IZ0IHnAGTVWerg77RVLbtmdgSwTLyMlyFDrFb86/YglIUrDBNW67bmx6aZUGc4ETgqdRGNM2YgOsG2ppCHqbjq7dEJOrNInQaRsSUNm6u+JlIZaj0PfdobUDPWiNxX/89qJCa66KZdxYlCy+aIgEcREZPo26XOFzIixJZQpbm8lbEgVZcaGU7AheIsvL5NGpeydlyv3F6XqdRZHHo7gGM7Ag0uowi3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AA62NBA==</latexit>

G
<latexit sha1_base64="znlNvdKUuTj8xBn7KQjYldwg35s=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BD3pMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A51DjM8=</latexit>

D
<latexit sha1_base64="WoflC9OsYADNdO+14nzcYBdCAmo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5i3jMw=</latexit>

Lg,↵
<latexit sha1_base64="7gBJZJYrCMcTNjqsR0iiX6tnw68=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFoNgIeEuCloGbSwsIpgPyJ1hb7OXLNnbW3b3hHDkb9hYKGLrn7Hz37hJrtDEBwOP92aYmRdKzrRx3W+nsLK6tr5R3Cxtbe/s7pX3D1o6SRWhTZLwRHVCrClngjYNM5x2pKI4Djlth6Obqd9+okqzRDyYsaRBjAeCRYxgYyX/7jEbnPmYyyGe9MoVt+rOgJaJl5MK5Gj0yl9+PyFpTIUhHGvd9Vxpggwrwwink5KfaioxGeEB7VoqcEx1kM1unqATq/RRlChbwqCZ+nsiw7HW4zi0nTE2Q73oTcX/vG5qoqsgY0KmhgoyXxSlHJkETQNAfaYoMXxsCSaK2VsRGWKFibExlWwI3uLLy6RVq3rn1dr9RaV+ncdRhCM4hlPw4BLqcAsNaAIBCc/wCm9O6rw4787HvLXg5DOH8AfO5w/VIpGN</latexit>

(L�)g0,↵0
<latexit sha1_base64="S/LKZx+P7MhNIZpEIdiGPTJuxls=">AAACAHicbVC7SgNBFJ2NrxhfqxYWNoNBEkHCbhS0DNpYWEQwD8huwuxkNhkyuzPMzAph2cZfsbFQxNbPsPNvnDwKjR64cDjnXu69JxCMKu04X1ZuaXlldS2/XtjY3NresXf3moonEpMG5ozLdoAUYTQmDU01I20hCYoCRlrB6Hritx6IVJTH93osiB+hQUxDipE2Us8+KN92PS5Yok666aB06iEmhqiU9eyiU3GmgH+JOydFMEe9Z396fY6TiMQaM6RUx3WE9lMkNcWMZAUvUUQgPEID0jE0RhFRfjp9IIPHRunDkEtTsYZT9edEiiKlxlFgOiOkh2rRm4j/eZ1Eh5d+SmORaBLj2aIwYVBzOEkD9qkkWLOxIQhLam6FeIgkwtpkVjAhuIsv/yXNasU9q1Tvzou1q3kceXAIjkAZuOAC1MANqIMGwCADT+AFvFqP1rP1Zr3PWnPWfGYf/IL18Q2GA5W4</latexit>

(1)
<latexit sha1_base64="ARWWgpxuqoZXsesNyzxUz/0/uEg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CuYY8OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2Xvsl8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTVjzp1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1Yp3VaneX5fqtSyOPJzBOZTBgxuowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8APgeNFA==</latexit>

(2)
<latexit sha1_base64="YHVTAQQJCwBkAzTqbtMYz1JRY9A=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CuYY8OIxonlAEsLspDcZMju7zMwKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnLR0limGTRSJSHZ9qFFxi03AjsBMrpKEvsO1Pbud++wmV5pF8NNMY+yEdSR5wRo2VHsrVy0Gx5FbcBcg68TJSggyNQfGrN4xYEqI0TFCtu54bm35KleFM4KzQSzTGlE3oCLuWShqi7qeLU2fkwipDEkTKljRkof6eSGmo9TT0bWdIzVivenPxP6+bmKDWT7mME4OSLRcFiSAmIvO/yZArZEZMLaFMcXsrYWOqKDM2nYINwVt9eZ20qhXvqlK9vy7Va1kceTiDcyiDBzdQhztoQBMYjOAZXuHNEc6L8+58LFtzTjZzCn/gfP4AP4yNFQ==</latexit>

g0
<latexit sha1_base64="ecmO1mGk7Fm+RHvQWcAmwIv5dV4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KkkV7LHgxWMV+wFtKJvtpl262YTdiVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSw/CiXyq7FXcOskq8nJQhR6Nf+uoNYpZGXCGT1Jiu5yboZ1SjYJJPi73U8ISyMR3yrqWKRtz42fzSKTm3yoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimGNT8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpyiDcFbfnmVtKoV76pSvb8u12t5HAU4hTO4BA9uoA530IAmMAjhGV7hzRk7L86787FoXXPymRP4A+fzBys3jRY=</latexit>

g
<latexit sha1_base64="WUTGfBlIywQG06OT9zOu28DvMzY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUHA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJt3pTrtTyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBysGM5Q==</latexit>

ag0,↵0
<latexit sha1_base64="NYey7RWf1hrTQW7BJD9p+9+MMr8=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYJB4kLAbBXMMePEYwTwg2YTeyWwyZPbBzKwSlvyHFw+KePVfvPk3TpI9aGJBQ1HVTXeXFwuutG1/W2vrG5tb27md/O7e/sFh4ei4qaJEUtagkYhk20PFBA9ZQ3MtWDuWDANPsJY3vp35rUcmFY/CBz2JmRvgMOQ+p6iN1MNeOixddlHEIyxN+4WiXbbnIKvEyUgRMtT7ha/uIKJJwEJNBSrVcexYuylKzalg03w3USxGOsYh6xgaYsCUm86vnpJzowyIH0lToSZz9fdEioFSk8AznQHqkVr2ZuJ/XifRftVNeRgnmoV0schPBNERmUVABlwyqsXEEKSSm1sJHaFEqk1QeROCs/zyKmlWys5VuXJ/XaxVszhycApncAEO3EAN7qAODaAg4Rle4c16sl6sd+tj0bpmZTMn8AfW5w+6bpH6</latexit>

Figure 15: Diagram chasing for a contradiction

each L⊕ is a graph that can be obtained from L by adding either: (1) a single
loop with label xe; (2) a single edge with label xe between distinct nodes; (3) a
single rooted/non-rooted node labelled with xv and a non-looping edge incident to
it with label xv; or variants of (1)–(3) but having ‘any’ as the mark(s) of the new
edge/node. If the index set A is empty, then Dang(r) = true.

Proof. (=⇒) Assume that g |=α Dang(K ↪→ L). Then g |=α ∧
a∈A ¬∃Lxe, xv.∃a

over the index set A from the construction, i.e. for each a : L ↪→ L⊕, there does
not exist some g′, α′ such that g′ |=α′ a. The morphism g satisfies the dangling
condition for L ←↩ K if no edge in G − g(Lg,α) is in the image of g(Lg,α − K).
This can be shown by assuming the existence of such an edge, and then deriving
a contradiction by the fact that the case is covered in A.

(⇐=) Assume that g satisfies the dangling condition for L ←↩ K. Then the
pair 〈K ↪→ Lg,α, g〉 has a pushout complement D ∈ G(L). Assume there exists an
a ∈ A (from the construction) such that 〈K ↪→ L, a〉 has no pushout complement,
and there exists some assignment α′ and morphism g′ : (L⊕)g′,α′ ↪→ G with g′ ◦
ag′,α′ = g. Construct (2) (Figure 15) as a pullback of (L⊕)g′,α′ ↪→ G ←↩ D. By
the universal property of pullbacks, there is a morphism K ↪→ K′ such that the
resulting diagrams commute. By the pushout-pullback decomposition, (1)+(2)
has a decomposition into pushout (1) and (2), thus 〈K ↪→ Lg,α, ag′,α′〉 and 〈K ↪→
L, a〉 have pushout complements. A contradiction. There is no morphism in A that
can be satisfied, and so g |=α Dang(K ↪→ L).

Lemma 4.8 (Encoding rule schema conditions). For every conditional rule schema
r = 〈L⇒ R,Γ〉, assignment α with dom(α) = dom(L), and match g : Lg,α ↪→ G,

g |=α τ(L,Γ) if and only if Γg,α = true.
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Construction. The transformation is defined inductively as follows (see Figure 4
for the syntax of rule schema conditions). If Γ has the form type(x), l1 = l2,
l1 != l2, or i1 ./ i2 (where ./ is a relational operator on integers), then τ(L,Γ) = Γ.
If Γ has the form edge(v1,v2) where v1, v2 ∈ VL, then τ(L,Γ) = ∃Lx.∃L ↪→ Lu ∨
∃L ↪→ Lm where x is a fresh variable, and where Lu, Lm are constructed from L by
disjointly adding an edge e with source sL(v1), target tL(v2), and respectively label
x or (x, any). If Γ has the form edge(v1,v2,l) where v1, v2 ∈ VL and l in Label,
then τ(L,Γ) = ∃L ↪→ Lu ∨ ∃L ↪→ Lm where each Lu, Lm are constructed from L
by disjointly adding an edge e with source sL(v1), target tL(v2), and respectively
label l or (l, any). If Γ has the form not Γ′, then τ(L,Γ) = ¬Γ. If Γ has the form
Γ1 and Γ2, then τ(L, γ) = Γ1 ∧ Γ2 (analogous for or). If Γ has the form (Γ′), then
τ(L,Γ) = Γ′.

Proof. By structural induction over the grammar defining rule schema conditions.

Proposition 4.9 (Applicability). For every graph G ∈ G(L), ME-constraint c, and
set of rule schemata R,

G |= App(R) ∧ c if and only if G |= SE[R, c].

Construction. Define App(∅) = false and App(R) =
∨

r∈R app(r) where app(r) =

∃t1x1. · · · ∃tnxn. ∃∅ ↪→ L. τ(L,Γ) ∧ Dang(K ↪→ L). Here, vars(L) = {x1, · · · xn},
and each ti indicates the type of variable xi.

Proof. (=⇒) Assume that G |= App(R)∧c. Then there exists some r = 〈L⇒ R,Γ〉
such that iG |=α∅ ∃t1x1. · · · ∃tnxn. ∃∅ ↪→ L. τ(L,Γ) ∧ Dang(K ↪→ L). There exists a
morphism q : Lq,α ↪→ G defined for variables x1, · · · xn such that q ◦ ∅ ↪→ Lq,α =

iG, q |=α τ(L,Γ), and q |=α Dang(K ↪→ L). By Lemma 4.8, Γq,α = true. By
Lemma 4.7, q satisfies the dangling condition for K ←↩ L. There exists a rule
application G ⇒r H and G ⇒R H with match q and thus (G,H) ∈ ~R�ok. By
Definition 3.3, G |= SE[R, c].

(⇐=) Assume that G |= SE[R, c]. By Definition 3.3, G |= c and there exists
a graph H such that (G,H) ∈ ~R�ok. By the semantics of rule schema sets, there
exists an r ∈ R such that G ⇒r H for some match g : Lg,α ↪→ G that satisfies
the dangling condition with Γg,α = true. By Lemmas 4.7 and 4.8, g |=α τ(L,Γ) ∧
Dang(K ↪→ L). Given that g ◦ ∅ ↪→ Lg,α = iG and α is defined exactly for vars(L),
we get G |= ∃t1x1. · · · ∃tnxn. ∃∅ ↪→ L.τ(L,Γ) ∧ Dang(K ↪→ L) = app(r) and thus
the result G |= App(R) ∧ c.
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Proposition 4.10 (Non-applicability). For every graph G ∈ G(L), ME-constraint
c, and set of rule schemata R,

G |= ¬App(R) ∧ c if and only if G |= FE[R, c].

Proof. Immediate from Definition 3.4, the definition of ¬, and Proposition 4.9.

Example 4.11 (Applicability). Consider the rule schema red2 (Figure 8). The
transformation App(red2) results in the following ME-constraint:

∃La, b, x, y.∃ x ya
b

1 2 .¬∃Le.∃ x y

a

b1 2

e

∧ ¬∃Le.∃ x y

a

b1 2

e ∧ ¬∃Le, z.∃ x ya
b

1 2
ze ∧ · · ·

The applicability of the rule schema rests on there being a morphism that satisfies
the dangling condition. In this case, a morphism satisfies the dangling condition
for red2 if there are no additional edges incident to nodes in the codomain of the
morphism. For brevity, the ME-constraint omits a number of conjuncts, e.g. those
involving loops incident to nodes 1 and 2, or those involving edges between node
1 and some other node not in the match.

4.3. Constructing Weakest Postconditions
Next, we propose a transformation ‘WPost’ that defines the extensional asser-

tion WPOST for rule schemata and ME-constraints. In particular, WPost trans-
forms a set of rule schemata and a presumption into a weakest postcondition,
i.e. the weakest property a graph must satisfy to guarantee the existence of a pre-
state that satisfies the presumption. WPost is defined via two intermediate trans-
formations: ‘Shift’ and ‘Right’.

We begin by defining ‘Shift’, which can be used to transform a ME-constraint
c into a ME-condition over the left-hand side of a rule L by considering all the
ways that a ‘match’ can overlap with c. Our definition is adapted from earlier
shifting constructions in [7, 12, 24, 25] to handle the presence of list variables.
Intuitively, this is handled via a disjunction over all possible substitutions of a
variable in c for list expressions or variables in L, i.e. to account for assignments
in which they refer to the same values.

To facilitate this, we require that the labels in c are list variables distinct from
those in L. This is a mild assumption, as an arbitrary expression can be replaced
with a variable that is then equated with the original expression in an assignment
constraint.
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Lemma 4.12 (ME-constraint to left ME-condition). Let r denote a rule schema
and c a ME-constraint labelled over list variables distinct from those in r. For
every graph G ∈ G(L) and morphism g : Lg,α ↪→ G with dom(α) = vars(L),

g : Lg,α ↪→ G |=α Shift(r, c) if and only if G |= c.

Construction. Let c denote a ME-constraint and r a rule schema with left-hand
side L. Define Shift(r, c) = Shift′(∅ ↪→ L, c). We define Shift′ inductively for mor-
phisms p : p ↪→ P′ over G(RG) and ME-conditions over P. Let Shift′(p, true) =

true and Shift′(p, γ) = γ. Then,

Shift′(p,∃Lx. c) = ∃Lx. Shift′(p, c)

Shift′(p,∃VX. c) = ∃VX. Shift′(p, c)

Shift′(p,∃EX. c) = ∃EX. Shift′(p, c)

Shift′(p,∃a : P ↪→ C. c) =
∨
σ∈Σ

∨
e∈εσ
∃b : P′ ↪→ E. Shift′(s : Cσ ↪→ E, cσ)

Here, Σ is a set of substitutions, including the empty substitution, and all substi-
tutions of the form (x1 7→ e1, . . . xn 7→ en), where each xi ∈ vars(C) \ vars(P) and
each ei is a list expression present in the labels of VP′ and EP′ . Construct pushout
(1) of p and a as depicted in Figure 16. The disjunction ranges over the set εσ,
which we define to contain every surjective morphism e : (C′)σ ↪→ E such that
b = e ◦ a′ and s = e ◦ q are injective morphisms. (We consider codomains of
each e up to isomorphism, so the disjunction is finite.) Whenever nodes/edges are
equated in this case, we substitute the node/edge identifier used in P′ for the one
it is equated with in C.

Shift and Shift’ are defined for Boolean formulae over ME-conditions in the
standard way.

The proof relies on a more general version of the lemma given in the Appendix
(Lemma B.1).

Proof. By Lemma B.1, g : Lg,α ↪→ G |=α Shift(r, c) = Shift′(iL : ∅ ↪→ L, c) if and
only if g ◦ ig,α

L |=α c if and only if iG : ∅ ↪→ G |=α c if and only if iG |=α∅ c if and
only if G |= c.

Example 4.13 (ME-constraint to left ME-condition). Consider the rule schema
red2 (Figure 8). Let c denote the ME-constraint from Example 4.5.

After simplification, the transformation Shift(red2, c) results in the follow-
ing ME-condition over the left-hand side of red2:
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P

CC’

P’

E

(1) a

p

b

Cσ(C’)σ
q

s
e

a’

Figure 16: Pushout construction for Shift’

∃Lc, d.∃ x ya
b

1 2 ↪→ c d
v w x ya

b
1 2.path(v,w) ∨ path(w,v)

∨ ∃Ld.∃ x ya
b

1 2 ↪→ d
v=2w x ya

b
1 .path(2,w) ∨ path(w,2)

∨ ∃Lc.∃ x ya
b

1 2 ↪→ c
v

x ya
b

w=21 .path(v,2) ∨ path(2,v)

The second intermediate transformation for ‘WPost’ is ‘Right’, which trans-
forms a ME-condition over the left-hand side of a rule to a ME-condition over the
right-hand side. This construction is based on transformation ‘L’ from [7, 12] but
in the reverse direction.

The transformation is made more complex by the presence of path and MSO
expressions, because nodes and edges referred to on the left-hand side may no
longer exist on the right. For clarity, we separate the handling of these two types
of expressions, and in particular, define a decomposition RPath of path predicates
according to the items that the rule is deleting or creating. For example, if an
edge is deleted by a rule, a path predicate decomposes to a disjunction of path
predicates collectively asserting the existence of paths to and from the nodes that,
in the pre-state, were incident to it. On the other hand, if an edge is to be created,
the predicate will exclude it.

Lemma 4.14 (Path decomposition). For every rule schema r, direct derivation
G ⇒r,g,h H, path predicate γ, and assignment α,

γg,α = RPath(r, γ)h,α.

Construction. Suppose γ has the form path(v,w, not E). If v,w ∈ VK , then
RPath(r, γ) = path(v,w, not E	) where E	 = E ∪ ER \ EL. If either (or both) v
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or w not in VK , then RPath(r, γ) is defined as false in disjunction with:∨
x,y∈VK ·pathL(v,x,E)∧pathL(y,w,E)

path(x,y,not E	) ∨ DeletedPaths(r, x, y)

Above, DeletedPaths(r, x,w) is defined as false in disjunction with:∨
〈〈a1,b1〉,...〈an,bn〉〉

(
path(x,a1,not E	) ∧ . . . path(bi,ai+1,not E	) ∧ . . . path(bn,y,not E	)

)

where the non-empty sequences of distinct pairs are drawn from {(a, b) | a, b ∈
VK ∧ pathL(a, b, E) ∧ ¬pathR(a, b, E	)}.

If γ has the form path(v,w), then RPath(r, γ) = RPath(r, path(v,w,not ∅)).

Proof. By case analysis for each possible context of a match, following the proof
structure of Proposition 1 in [25] (but in the reverse direction).

Example 4.15 (Path decomposition). Consider the ME-condition Shift(red2, c)
from Example 4.13. Now, consider the derived rule schema r∗1 = c d

v w x ya
b

1 2 ←↩
c d

v w ↪→ c d
v w. Then, RPath(r∗1, path(v,w)) = path(v,w) and moreover,

RPath(r∗1, path(w,v)) = path(w,v), since v,w are both in the interface of r∗1.
Now consider the derived rule schema r∗2 = d

v=2w x ya
b

1 ←↩ d w ↪→ d w. In this
case, RPath(r∗2, path(2,w)) and RPath(r∗2, path(w,2)) both evaluate to false,
as there are no nodes in the interface that are connected by a path to node 2.

In addition to paths, transformation Right must handle MSO expressions that
refer to items present in L but absent in R. To achieve this, it computes a dis-
junction over all possible ‘past’ (i.e. immediately before the rule application) set
memberships of these missing items. The idea is that if there are set memberships
for deleted items in the post-state that satisfy the assignment constraints, then such
a set membership would have existed in the pre-state before their deletion. The
transformation keeps track of potential set memberships of deleted items via sets
of pairs as follows.

Definition 4.16 (Membership set). A membership set M is a set of pairs (x, X) of
node/edge identifiers x with set variables of the corresponding type.
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L K R⊕

X Z Y

(1) (2)a b

Figure 17: Pushout construction for Right

Lemma 4.17 (Left to right ME-condition). Let r = 〈L ←↩ K ↪→ R〉 denote a rule
schema and c a ME-condition over L. Then for every direct derivation G ⇒r,g,h H
with g : Lg,α ↪→ G, h : Rg,α ↪→ H, and dom(α) = vars(L),

g : Lg,α ↪→ G |=α c if and only if h : Rg,α ↪→ H |=α Right(r, c).

Construction. Let Right(r, c) = Right′(r, c, ∅). For such an r and a membership
set M, Right′(r, true,M) = true and Right′(r,∃Lx. c,M) = ∃Lx. Right′(r, c,M).

If γ is a path predicate, Right′(r, γ,M) = RPath(r, γ). If γ has the form x ∈ X,
then Right′(r, γ,M) = true if (x, X) ∈ M, otherwise false. Otherwise, if γ
is a relation over list expressions, Right′(r, γ,M) = γ, but with the following
substitutions: (1) n for indeg(v) where v ∈ VL, v < VR, and n is the indegree of v
in L; (2) indeg(v)−n for indeg(v) where v ∈ VK and n is the net change of edges
from L to R with target v; (3–4) analogous cases for outdeg; (5) card(X)+ n for
card(X) where n is the number of ( , X) pairs in M.

For ME-conditions quantifying set variables,

Right′(r,∃VX. c,M) = ∃VX.
∨

M′∈2MV

Right′(r, c,M ∪ M′)

Right′(r,∃EX. c,M) = ∃EX.
∨

M′∈2ME

Right′(r, c,M ∪ M′)

where MV = {(v, X) | v ∈ VL \ VR} and ME = {(e, X) | e ∈ EL \ ER}.
Finally, Right′(r,∃a. c,M) = ∃b. Right′(r∗, c,M) if 〈K ↪→ L, a〉 has a natural

pushout complement (1) in Figure 17, where R⊕ denotes R with in/outdeg re-
placed as described earlier, and r∗ = 〈X ←↩ Z ↪→ Y〉 denotes the rule ‘derived’
by also constructing natural pushout (2). If 〈K ↪→ L, a〉 has no natural pushout
complement, then Right′(r,∃a. c,M) = false.

Right’ is defined for Boolean formulae over ME-conditions as per usual.

Proof. With the construction of Right and Lemma B.2, we have g |=α c if and
only if h |=α Right′(r, c, ∅) if and only if h |=α Right(r, c).
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Example 4.18 (Left to right ME-condition). Consider the rule schema red2 (Fig-
ure 8) and the ME-condition Shift(red2, c) from Example 4.13.

After simplification, the transformation Right(red2, Shift(red2, c)) results
in the following ME-condition over the right-hand side of red2:

∃Lc, d.∃∅ ↪→ c d
v w.path(v,w) ∨ path(w,v)

∨ ∃Ld.∃∅ ↪→ d w.false ∨ ∃Lc.∃∅ ↪→ c
v.false

≡ ∃Lc, d.∃∅ ↪→ c d
v w.path(v,w) ∨ path(w,v)

Observe how the disjuncts concerning overlaps of the rule and the original ME-
constraint cannot be satisfied. This is because there cannot be a path to/from a
node of the comatch to outside of it, since red2 deletes every node/edge in the
match. Hence, a path can only exist in the pre-state if it exists in the post-state
outside of the comatch.

Finally, we can give ‘WPost’ a simple definition based on the two intermedi-
ate transformations. Intuitively, it constructs a disjunction of ME-constraints that
demand the existence of some co-match that can result from applying the rule
schema set to a graph satisfying the presumption.

Proposition 4.19 (Weakest postcondition). Let R denote a rule schemata set and
c a ME-constraint. Then for every graph H ∈ G(L),

H |= WPost(R, c) if and only if H |= WPOSTok[R, c].

Construction. Define WPost(∅, c) = false and WPost(R, c) =
∨

r∈Rwpost(r, c).
Let:

wpost(r, c) = ∃t1x1. · · · ∃tnxn.∃∅ ↪→ R⊕.Dang(K ↪→ R⊕)∧Right(r,Shift(r, c)∧τ(L,Γ))

where R⊕ is obtained from R by replacing in/outdeg expressions as in Lemma 4.17,
{x1, · · · , xn} = vars(R⊕), and each ti indicates the type of variable xi.

Proof. (=⇒) Assume that H |= WPost(R, c). There exists some r ∈ R such that:

H |= ∃t1x1. · · · ∃tnxn.∃∅ ↪→ R⊕.Dang(K ↪→ R⊕) ∧ Right(r,Shift(r, c) ∧ τ(L,Γ)).

There exists an h : (R⊕)h,α ↪→ H such that h |=α Dang(K ↪→ R⊕) and h |=α

Right(r,Shift(r, c) ∧ τ(L,Γ)). By Lemma 4.7, there exists a direct derivation from
some graph H to G via a ‘rule’ R⊕ ⇒ L, and thus some match g : Lg,α ↪→ G
from which H can be derived via a rule L ⇒ R (note that Rg,α = (R⊕)h,α).
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By Lemma 4.17, g |=α Shift(r, c) ∧ τ(L,Γ). By Lemma 4.12, G |= c, and by
Lemma 4.8, Γg,α = true. Together, there is a direct derivation G ⇒r H for
r = 〈L⇒ R,Γ〉, i.e. (G,H) ∈ ~R�ok, and H |= WPOSTok[R, c].

(⇐=) Assume that H |= WPOSTok[R, c]. By Definition 3.5, there exists some
G.G |= c and (G,H) ∈ ~R�ok, i.e. there exists a conditional rule schema r = 〈L ⇒
R,Γ〉 in R such that G ⇒r H. There exists a match g : Lg,α ↪→ G with Γg,α = true,
and thus g |=α τ(L,Γ) by Lemma 4.8. By the definition of |=, Lemma 4.12, and
Lemma 4.17, there exists some h : Rg,α ↪→ G |=α Right(r,Shift(r, c) ∧ τ(L,Γ)).
Using Lemma 4.7, h |=α Dang(K ↪→ R). Observe that Rg,α = (R⊕)h,α. Together,
we have:

H |= ∃t1x1. · · · ∃tnxn.∃∅ ↪→ R⊕.Dang(K ↪→ R⊕) ∧ Right(r,Shift(r, c) ∧ τ(L,Γ))

where each ∃tixi quantifies a variable in R⊕ with the appropriate type ti. We
have H |= wpost(r, c), and being a disjunct of WPost(r, c), we get the result
H |= WPost(r, c).

Example 4.20 (Weakest postcondition). Consider the rule schema red2 (Fig-
ure 8) and the ME-constraint c in Example 4.5. The weakest postcondition of
red2 relative to c, denoted WPost(red2, c), is simply:

≡ ∃Lc, d.∃ c d
v w.path(v,w) ∨ path(w,v)

(Observe that the inverse dangling condition is not an issue since the right-hand
side of red2 is ∅, and the condition of the rule schema is simply true.)

4.4. Proof Rules with ME-Constraints
Having proposed an assertion language and used it to define (decidable frag-

ments of) the extensional SE, FE, and WPOST assertions, we are now able to
define an intensional version of the under-approximate logic with respect to that
language. Figure 18 presents this, but for brevity, only displays axioms and proof
rules that are different from the extensional versions (for example, the intensional
version of Cons is the same as the extensional one in Figure 12).

Note that certain extensional proof rules cannot be ‘fully’ expressed with our
assertion language. In particular, we cannot use ME-constraints to express the
applicability of an arbitrary program. This is because programs can contain as-
long-as-possible iteration which would require undecidable logics to reason about
in general. Our intensional calculi restricts SE and FE to the applicability of rule
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RuleSetSucc ` [c ∧ App(R)] R [ok : WPost(R, c)][ f a : false]

RuleSetFail ` [c ∧ ¬App(R)] R [ok : false][ f a : c ∧ ¬App(R)]

` [c ∧ App(R)] P [ε : d] or ` [c ∧ ¬App(R)] Q [ε : d]
IfElse ` [c] if R then P else Q [ε : d]

` [c ∧ App(R)] R; P [ε : d] or ` [c ∧ ¬App(R)] Q [ε : d]
TryElse ` [c] try R then P else Q [ε : d]

IterZero ` [c ∧ ¬App(R)] R! [ok : c ∧ ¬App(R)][ f a : false]

` [c ∧ App(R)] R;R! [ok : d ∧ ¬App(R)]
IterStep ` [c ∧ App(R)] R! [ok : d ∧ ¬App(R)]

` [ci−1] R [ok : ci] for all 0 < i ≤ n, and cn =⇒ ¬App(R)
IterVar ` [c0] R! [ok : cn]

Figure 18: Proof rules with ME-constraints (rules with no changes from Figures 11–12 omitted)

schemata sets, but in general it would be possible to extend the transformation to
a less restricted fragment (see e.g. [34]).

Note also that the IterVar rule is more restricted in that assertions are indexed
rather than parameterised, as the latter would likely extend the expressive power
of ME-conditions beyond monadic second-order logic on graphs.

Our proof rules for ME-constraints inherit the soundness result of the exten-
sional proof rules presented earlier. This is due to the fact that the transforma-
tions App, ¬App, and WPost correctly implement the extensional assertions SE,
FE, and WPOST for the fragments of the language (i.e. sets of conditional rule
schemata) that they are defined for.
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Theorem 4.21 (Soundness (for ME-constraints)). For all ME-constraints c, d,
graph programs P, and exit statuses ε ∈ {ok, f a},

` [c] P [ε : d] implies |= [c] P [ε : d].

Proof. Immediate from the soundness of the extensional proof system (Theo-
rem 3.8) and the results that App, ¬App, and WPost define SE, FE, and WPOST
(Propositions 4.9, 4.10, and 4.19).

While the extensional proof rules are relatively complete (Theorem 3.9), it
remains an open problem whether or not our intensional proof rules are com-
plete, even for programs that restrict iteration to sets of rule schemata. This is
because the completeness proof depends on the expressiveness of the assertion
language, i.e. the ability of ME-constraints to express the weakest postconditions
of programs with respect to arbitrary presumptions. The expressiveness of ME-
constraints, in this sense, is unknown [34].

5. Example Proofs

In this section, we demonstrate how our under-approximate logic with ME-
constraints can be used to reason about incorrectness in some GP 2 programs for
recognising cycle graphs.

Example 5.1 (Recognising cycle graphs I). Recall Example 2.13, which intro-
duced cycle graphs and a graph program for recognising them. The program
is-cycle-buggy in Figure 8 was meant to recognise whether an input graph
is a cycle graph or not, by reducing cycle graphs to the empty graph.

To be more precise, call an unmarked and unrooted host graph an input graph.
Then is-cycle-buggy is intended to be totally correct with respect to the fol-
lowing specifications:

Spec1
Input: A cycle graph.
Output: The empty graph.

Spec2
Input: An input graph that is not a cycle graph.
Output: A non-empty graph.
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` [empty ∧ ¬App(init)] init [ f a : empty ∧ ¬App(init)]
` [¬cycle] init [ f a : empty]

` [¬cycle] init; Reduce [ f a : empty]

Figure 19: Proving the presence of non-empty graphs (ME-constraints in Figure 20)

It is relatively straightforward to check that the program in Figure 8 reduces
every cycle graph to the empty graph, and hence is-cycle-buggy is totally cor-
rect with respect to Spec1. (Moreover, one can prove that the reduction requires
only linear time. We refer to [28] for a proof that the related program is-cycle

of Example 5.2 has a linear time complexity.)
One can also show that is-cycle-buggy reduces input graphs that are not

cycle graphs to non-empty graphs—provided that the input graphs are not empty.
The program fails on the empty graph because init is not applicable, and thus
is-cycle-buggy is not partially correct with respect to Spec2. We now verify
this fact with the incorrectness calculus.

Figure 19 depicts a simple proof tree that shows it is possible for a non-cycle
graph to result in the program failing on an empty graph (which is also the in-
put). The assertions of the proof tree are given in Figure 20: note that we abbre-
viate indeg(v)=outdeg(v) ∧ outdeg(v)=1 to indeg(v)=outdeg(v)=1 in the
ME-constraint cycle. Two side conditions empty =⇒ empty ∧ ¬App(init) and
empty ∧ ¬App(init) =⇒ ¬cycle clearly hold.

As this is an under-approximate proof, it soundly removes execution paths
that are irrelevant to the post-state we want to prove the presence of. In particular,
the proof focuses on failing executions of init that lead to a post-state violating
Spec2. Instead of reasoning about every execution, we only reason about those
that matter for this (un)desired post-state, quickly helping to explain why the triple
is not provable under partial correctness.

Example 5.2 (Recognising cycle graphs II). Consider the program is-cycle in
Figure 21. As shown in [28], this program reduces cycle graphs to the empty graph
and fails on non-cycle graphs. Hence is-cycle satisfies Spec1 and the specifica-
tion Spec3 below.

Spec3
Input: An input graph that is not a cycle graph.
Output: Failure.
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cycle = ∀La.∀ a
v .indeg(v)=outdeg(v)=1

∧ ∀La, b.∀ a b
v w.path(v,w) ∨ path(w,v)

∧ ∃La.∃ a ∧ ¬∃La.∃ a

empty = ¬∃La.∃ a ∧ ¬∃La.∃ a

App(init) = ∃Lx.∃ x

Figure 20: ME-constraints used in the proof in Figure 19

Main = init; Reduce; if match then fail

Reduce = red3!; {red2, red1}
init(x:list) red1(a,x:list) match(x:list)

x ⇒ x
1 1

x ⇒ ∅a x ⇒ x
1 1

red2(a,b,x,y:list) red3(a,b,x,y,z:list)

x y ⇒ ∅
a
b x y z ⇒ x z

1 2 1 2

a b a

Figure 21: GP 2 program is-cycle

Suppose that a programmer makes the mistake to formalise cycle graphs as
non-empty host graphs in which each node has exactly one incoming and one
outgoing edge. Let us call such graphs multi-cycle graphs because they can be
seen as multisets of cycle graphs. The specifications Spec4 and Spec5 below
are obtained from Spec1 and Spec3 by replacing cycle graphs with multi-cycle
graphs.

Spec4
Input: A multi-cycle graph.
Output: The empty graph.

Spec5
Input: An input graph that is not a multi-cycle graph.
Output: Failure.

Program is-cycle satisfies Spec5 because Spec5 is obtained from Spec3
by weakening the precondition (every non-multi-cycle graph is also a non-cycle
graph). However, is-cycle violates Spec4 because it fails on the multi-cycle
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graph of Figure 22. This is because red1 deletes only one of the nodes and its
loop, after which match triggers failure.

Figure 22: A multi-cycle graph showing that is-cycle violates Spec4

We now use our calculus to verify the incorrectness of is-cycle with respect
to Spec4. The proof tree is given in Figure 23, and the ME-constraints utilised are
given in Figure 24. Note that, for space constraints, the results of the WPost trans-
formations are simplified to equivalent ME-constraints. Furthermore, we soundly
omit a disjunct of WPost({red2, red1}, e) that is not relevant to the proof—a hall-
mark of under-approximate reasoning.
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` [c ∧ App(init)] init [ok : WPost(init, c)]
` [c] init [ok : e]

(see sub-tree below)
` [e] Reduce [ok : d]

` [c] init; Reduce [ok : d]

` [d] fail [ f a : d]
` [d ∧ App(match)] fail [ f a : d]
` [d] if match then fail [ f a : d]

` [c] init; Reduce; if match then fail [ f a : d]

` [e ∧ ¬App(red3)] red3! [ok : e ∧ ¬App(red3)]
` [e] red3! [ok : e]

` [e ∧ App({red2, red1})] {red2, red1} [ok : WPost({red2, red1}, e)
` [e] {red2, red1} [ok : d]

` [e] Reduce [ok : d]

Figure 23: Proving the presence of failure (ME-constraints in Figure 24)
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c = ∀La.∀ a
v .indeg(v)=outdeg(v)=1

∧¬∃La.∃ a

d = ∃La.∃ a
v .indeg(v)=outdeg(v)=1

∧ ∀La.∀ a
v .indeg(v)=outdeg(v)=1

∧¬∃La.∃ a

e = ∃La, b, c.∃ a b
c

v w .indeg(v)=outdeg(v)=1
∧ indeg(w)=outdeg(w)=1
∧ ∀Ld.∀ da b

c

v w z .indeg(z)=outdeg(z)=1
∧ ¬∃Ld.∃ a b d

c

v w

App(init) = ∃Lx.∃ x

App(match) = ∃Lx.∃ x

App(red3) = ∃La, b, x, y, z.∃ x y z
a b

v w .
Dang( v w ↪→ x y z

a b

v w )
App({red2, red1}) = ∃La, x.∃ x

a

v
.Dang(∅ ↪→ x

a

v
) ∨ . . .

WPost(init, c) ≡ ∃Lx.∃ x v.indeg(v)=outdeg(v)=1
∧ ∀La.∀ x v a w.indeg(w)=outdeg(w)=1
∧ ¬∃La.∃ x v a

WPost({red2, red1}, e) ≡ ∃Lb.∃ b w.indeg(w)=outdeg(w)=1
∧∀Ld.∀ db w z .indeg(z)=outdeg(z)=1
∧ ¬∃Ld. b dw

∨ . . .

Figure 24: ME-constraints used in the proof in Figure 23

6. Related Work

In this section, we highlight some related work in two key areas: under-
approximate reasoning and monadic second-order reasoning on graphs.

6.1. Under-Approximate Reasoning
Over-approximate program logics for proving the absence of bugs have been

studied extensively [32]. Our program logic differs by focusing on under-approximate
reasoning, i.e. proofs about the presence of bugs (in our case, forbidden graph
structure or failing execution paths). The first under-approximate calculus of this
kind was introduced by De Vries and Koutavas [14], who proposed the notion
of under-approximate validity, and defined a ‘Reverse Hoare Logic’ for proving
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reachability specifications over the proper states of imperative randomised pro-
grams. O’Hearn’s incorrectness logic [15] extended this program logic to sup-
port under-approximate reasoning about executions that result in errors, an idea
we adopt to support reasoning about both successful computations (ok) and fail-
ing executions ( f a). Both of these program logics use variants to reason about
while-loop termination, but unlike standard Hoare logics, require that the variant
decreases in the backwards direction. Our IterVar rule is similar, but requires
the number of iterations to be known as ME-constraints may not be expressive
enough to specify parameterised graph properties.

Raad et al. [16] combined separation logic with incorrectness logic to facil-
itate proofs about the presence of bugs using local reasoning, i.e. specifications
that focus only on the region of memory being accessed. They found that the
original model of separation logic, which does not distinguish dangling pointers
from pointers we have no knowledge about, to be incompatible with the under-
approximate frame rule. This was resolved by refining the model with negative
heap assertions that can specify that a location has been de-allocated.

Murray [18] proposed the first under-approximate relational logic, allowing
for reasoning about the behaviours of pairs of programs. As many important
security properties (e.g. noninterference, function sensitivity, refinement) can be
specified as relational properties, Murray’s program logic can be used to provably
demonstrate the presence of insecurity.

Bruni et al. [36] incorporate incorrectness logic in a proof system for abstract
interpretation that combines over- and under-approximation. Given an abstraction
that is ‘locally complete’ (i.e. complete only for some specific inputs, rather than
all possible inputs), they show that it is possible to prove both the presence as well
as the absence of true alerts.

Incorrectness logics allow formal reasoning about reachability specifications—
in our context, the presence of failure or forbidden graph structure. A complemen-
tary approach is to find counterexamples (i.e. instances of the forbidden structure)
using model checkers such as Groove [2]. Analysing graph transformation sys-
tems can be challenging, however, as they often have infinite state spaces, but this
can be mitigated by using bounded model checking [37].

6.2. Monadic Second-Order Reasoning on Graphs
Habel and Radke proposed HR∗ conditions [38], an extension of nested con-

ditions that embed hyperedge replacement grammars via graph variables. The
formalism is more expressive than monadic second-order logic on graphs, ly-
ing somewhere between counting monadic second-order logic and second-order
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logic [39]. HR∗ conditions can be ‘plugged in’ to our extensional proof rules so
long as transformations defining SE, FE, and WPOST can be provided.

Percebois et al. [40] demonstrate how one can verify global invariants involv-
ing paths (similar to our path predicates), directly at the level of rules. Rules are
modelled with (a fragment of) first-order logic on graphs in the interactive theo-
rem prover Isabelle.

Inaba et al. [41] address the verification of type-annotated Core UnCAL—a
query algebra for graph-structured databases—against input/output graph schemas
in MSO. They first reformulate the query algebra itself in MSO, before applying
an algorithm that reduces the verification problem to the validity of MSO over
trees.

Navarro et al. [42] developed a sound and complete deductive tableau method,
unifying a line of several works (e.g. [43, 44, 45]). Their method targets graph
navigational logic (GNL), which is also visual, and supports navigational proper-
ties, i.e. properties about the paths in a graph. Although ME-constraints are more
expressive, it would be interesting to instantiate our extensional calculi using GNL
so as to have a deductive system that also covers the side conditions of our proof
rules, e.g. implications such as c⇐= c′.

Wulandari and Plump [34] propose a standard (i.e. without morphisms) monadic
second-order logic with counting for graphs, and construct strongest liberal post-
conditions to prove the total correctness of GP 2 programs (including nested
loops). Our extensional proof rules could potentially be instantiated using their
logic as the assertion language.

7. Conclusion

We proposed an incorrectness logic for under-approximate reasoning about
GP 2, demonstrating that the deductive rules of Hoare logics can be ‘reversed’
to prove the presence of graph transformation bugs, such as the possibility of
illegal graph substructures or failing execution paths. In particular, we presented a
calculus of incorrectness axioms and rules, proved them to be sound and relatively
complete with respect to the semantics of GP 2, and demonstrated their use to
prove the presence of various bugs in faulty programs for detecting (multi-)cycle
graphs.

This paper was principally a theoretical exposition, but was motivated by some
potentially interesting applications. One idea (suggested by O’Hearn [15]) is to
recast static bug catchers in terms of finding under-approximation proofs. For
instance, incorrectness logic might be able to provide soundness arguments for
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approaches that symbolically execute graph or model transformations (e.g. [21,
22, 23]). Another idea is to use it to complement over-approximate proofs: if
one is unable to prove a partial correctness specification or the absence of fail-
ure [46], switch to under-approximate proofs instead and reason about the cir-
cumstances that could cause some undesirable result to be reachable. Our exam-
ples in Section 5 explored this idea in a preliminary way, proving triples in our
under-approximate program logic that explain why some related partial correct-
ness specifications cannot be proven. These applications would benefit from some
automation in the construction of incorrectness proofs, which may warrant the ex-
ploration of an assertion language equipped with deductive systems, e.g. graph
navigational logic [42].

Beyond exploring these potential applications, future work should also extend
our logic to a larger class of programs. For example, programs with nested loops,
which occur frequently in realistic graph programs (e.g. [28, 34]), or the graph
programs of other languages, such as the recipes of Groove [47, 2]). It is also
important to investigate how to make incorrectness reasoning for graph programs
easier. This could be in the form of guidelines on how to come up with incorrect-
ness specifications, or some derived proof rules for simplifying reasoning about
common patterns. Finally, it would be interesting to model more of the GP 2 run-
time so as to allow proofs with respect to improper exit statuses, such as division
by zero, or perhaps even non-termination.

Appendix A. Pushouts and Pullbacks

This appendix contains some key definitions and well-known results about
pushouts and pullbacks, which are used in some of the constructions and proofs in
the main part of the paper. Further results in the context of classic double-pushout
graph transformation and double-pushout graph transformation with relabelling
can be found respectively in [48] and [30]. Readers interested in the category-
theoretic background can consult a number of books, e.g. [49, 50, 51].

Note that we use the definitions of graphs and graph morphisms as presented
in Section 2, which permit nodes (but not edges) to be unlabelled. Note also that
we assume all morphisms to preserve and reflect rooted nodes, which ensures that
all of the following categorical properties (e.g. uniqueness of direct derivations)
apply in our setting [29].

Pushouts are an abstract gluing construction for two graph morphisms with a
common domain. Informally, a pushout graph is formed from the disjoint union
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Figure A.4: A pushout (left) and the universal property of pushouts (right)

Definition A.2 (Pushout complement). Given two graph morphisms A → B and B → D, a
graph C together with two graph morphisms A → C and C → D is a pushout complement of
A→ B and B→ D if the resulting diagram (i.e. (1) in Figure A.4) is a pushout. !

The dual construction of a pushout is a pullback, which can be seen as a generalisation of
intersection over a common graph.

Definition A.3 (Pullback). Given two graph morphisms B→ D and C → D, a graph A together
with two graph morphisms A → B and A → C form a pullback (PB) of B → D and C → D,
depicted as (1) in Figure A.5, if the following properties are satisfied:

Commutativity. A→ B→ D = A→ C → D.

Universal Property. For all graphs A′ and graph morphisms A′ → B and A′ → C such that
A′ → B → D = A′ → C → D, there is a unique graph morphism A′ → A such that
A′ → A→ B = A′ → B and A′ → A→ C = A′ → C (see Figure A.5).
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Figure A.5: A pullback (left) and the universal property of pullbacks (right)
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Natural pushouts are pushouts that are simultaneously pullbacks. Mention why
needed in the
context of
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Definition A.4 (Natural pushout). A pushout (1) as in Figure A.4 is a natural pushout if it is
simultaneously a pullback. !

Natural pushouts can be characterised in terms of ordinary pushouts [24]: if A → B is
injective, then (1) is natural if and only if every unlabelled node in A is mapped to an unlabelled
node in B or C. See, for example, the natural and non-natural pushouts in Figure A.6.
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Definition A.2 (Pushout complement). Given two graph morphisms A → B and B → D, a
graph C together with two graph morphisms A → C and C → D is a pushout complement of
A→ B and B→ D if the resulting diagram (i.e. (1) in Figure A.4) is a pushout. !

The dual construction of a pushout is a pullback, which can be seen as a generalisation of
intersection over a common graph.

Definition A.3 (Pullback). Given two graph morphisms B→ D and C → D, a graph A together
with two graph morphisms A → B and A → C form a pullback (PB) of B → D and C → D,
depicted as (1) in Figure A.5, if the following properties are satisfied:

Commutativity. A→ B→ D = A→ C → D.

Universal Property. For all graphs A′ and graph morphisms A′ → B and A′ → C such that
A′ → B → D = A′ → C → D, there is a unique graph morphism A′ → A such that
A′ → A→ B = A′ → B and A′ → A→ C = A′ → C (see Figure A.5).
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Definition A.4 (Natural pushout). A pushout (1) as in Figure A.4 is a natural pushout if it is
simultaneously a pullback. !

Natural pushouts can be characterised in terms of ordinary pushouts [24]: if A → B is
injective, then (1) is natural if and only if every unlabelled node in A is mapped to an unlabelled
node in B or C. See, for example, the natural and non-natural pushouts in Figure A.6.

Figure A.25: A pushout (left) and the universal property of pushouts (right)

of the codomains of the morphisms, but with nodes and edges identified when
they are also present in the common domain.

Definition A.1 (Pushout). Given two graph morphisms A → B and A → C, a
graph D together with two graph morphisms B → D and C → D form a pushout
(PO) of A → B and A → C, depicted as (1) in Figure A.25, if the following
properties are satisfied:

Commutativity. A→ B→ D = A→ C → D.

Universal Property. For all graphs D′ and graph morphisms B→ D′ and C → D′

such that A → B → D′ = A → C → D′, there is a unique graph morphism
D → D′ such that B → D → D′ = B → D′ and C → D → D′ = C → D′ (see
Figure A.25).

Definition A.2 (Pushout complement). Given two graph morphisms A→ B and
B → D, a graph C together with two graph morphisms A → C and C → D is a
pushout complement of A → B and B → D if the resulting diagram (i.e. (1) in
Figure A.25) is a pushout.

The dual construction of a pushout is a pullback, which can be seen as a gen-
eralisation of intersection over a common graph.

Definition A.3 (Pullback). Given two graph morphisms B → D and C → D, a
graph A together with two graph morphisms A → B and A → C form a pullback
(PB) of B → D and C → D, depicted as (1) in Figure A.26, if the following
properties are satisfied:

Commutativity. A→ B→ D = A→ C → D.
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Definition A.2 (Pushout complement). Given two graph morphisms A → B and B → D, a
graph C together with two graph morphisms A → C and C → D is a pushout complement of
A→ B and B→ D if the resulting diagram (i.e. (1) in Figure A.4) is a pushout. !

The dual construction of a pushout is a pullback, which can be seen as a generalisation of
intersection over a common graph.

Definition A.3 (Pullback). Given two graph morphisms B→ D and C → D, a graph A together
with two graph morphisms A → B and A → C form a pullback (PB) of B → D and C → D,
depicted as (1) in Figure A.5, if the following properties are satisfied:

Commutativity. A→ B→ D = A→ C → D.

Universal Property. For all graphs A′ and graph morphisms A′ → B and A′ → C such that
A′ → B → D = A′ → C → D, there is a unique graph morphism A′ → A such that
A′ → A→ B = A′ → B and A′ → A→ C = A′ → C (see Figure A.5).
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Definition A.4 (Natural pushout). A pushout (1) as in Figure A.4 is a natural pushout if it is
simultaneously a pullback. !

Natural pushouts can be characterised in terms of ordinary pushouts [24]: if A → B is
injective, then (1) is natural if and only if every unlabelled node in A is mapped to an unlabelled
node in B or C. See, for example, the natural and non-natural pushouts in Figure A.6.
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Definition A.2 (Pushout complement). Given two graph morphisms A → B and B → D, a
graph C together with two graph morphisms A → C and C → D is a pushout complement of
A→ B and B→ D if the resulting diagram (i.e. (1) in Figure A.4) is a pushout. !

The dual construction of a pushout is a pullback, which can be seen as a generalisation of
intersection over a common graph.

Definition A.3 (Pullback). Given two graph morphisms B→ D and C → D, a graph A together
with two graph morphisms A → B and A → C form a pullback (PB) of B → D and C → D,
depicted as (1) in Figure A.5, if the following properties are satisfied:

Commutativity. A→ B→ D = A→ C → D.

Universal Property. For all graphs A′ and graph morphisms A′ → B and A′ → C such that
A′ → B → D = A′ → C → D, there is a unique graph morphism A′ → A such that
A′ → A→ B = A′ → B and A′ → A→ C = A′ → C (see Figure A.5).
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Definition A.4 (Natural pushout). A pushout (1) as in Figure A.4 is a natural pushout if it is
simultaneously a pullback. !

Natural pushouts can be characterised in terms of ordinary pushouts [24]: if A → B is
injective, then (1) is natural if and only if every unlabelled node in A is mapped to an unlabelled
node in B or C. See, for example, the natural and non-natural pushouts in Figure A.6.

Figure A.26: A pullback (left) and the universal property of pullbacks (right)
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Figure A.6: Natural (left) and non-natural (right) pushouts (example from [24])

Lemma A.5 (Existence of pullbacks). Given two graph morphisms B → D and C → D, there
exists a graph A and two graph morphisms A→ B and A→ C such that the resulting diagram is
a pullback. !

PROOF. By Lemma 1 of [24].

The following lemmata describe some conditions that guarantee a pushout or pushout com-
plement to exist, given two morphisms over graphs with partially labelled nodes. For simplicity,
we give more restricted versions of the lemmata than the ones in the cited paper. This is because
we only invoke them in the context of rules, which we define to have injective morphisms only,
and totally labelled left and right graphs.

Lemma A.6 (Existence of pushouts). Given an injective graph morphism A ↪→ B with B a
totally labelled graph, and an injective graph morphism A ↪→ C that preserves undefinedness,
there exists a graph D and two graph morphisms B ↪→ D and C ↪→ D such that the resulting
diagram is a pushout. !

PROOF. By Lemma 2 of [24].

Lemma A.7 (Existence, uniqueness of natural PO complements). Given an injective graph
morphism B ↪→ D and inclusion A ↪→ B with B and D totally labelled graphs, there exists a
graph C with two injective graph morphisms A ↪→ C and C ↪→ D such that the resulting diagram
is a natural pushout if and only if B ↪→ D satisfies the dangling condition with respect to A ↪→ B.
Moreover, in this case, graph C is unique up to isomorphism. !

PROOF. By Lemma 4 of [24].

The following lemmata are particularly useful in the correctness proofs for the various trans-
formations of ME-conditions (see Section 5.2).

Lemma A.8 (Basic (de)compositions). The following (de)compositions relate to the commuta-
tive diagram in Figure A.7, in which all the graph morphisms are injective.

Pushout/pullback composition. If (1) and (2) are pushouts (resp. pullbacks) then the composite
diagram (1)+(2) is a pushout (resp. pullback).

Pushout decomposition. If (1)+(2) and (1) are pushouts, then (2) is also a pushout.

Pullback decomposition. If (1)+(2) and (2) are pullbacks, then (1) is also a pullback.

Figure A.27: Natural (left) and non-natural (right) pushouts (example from [30])

Universal Property. For all graphs A′ and graph morphisms A′ → B and A′ → C
such that A′ → B → D = A′ → C → D, there is a unique graph morphism
A′ → A such that A′ → A → B = A′ → B and A′ → A → C = A′ → C (see
Figure A.26).

Natural pushouts are pushouts that are simultaneously pullbacks.

Definition A.4 (Natural pushout). A pushout (1) as in Figure A.25 is a natural
pushout if it is simultaneously a pullback.

Natural pushouts can be characterised in terms of ordinary pushouts [30]: if
A → B is injective, then (1) is natural if and only if every unlabelled node in A
is mapped to an unlabelled node in B or C. See, for example, the natural and
non-natural pushouts in Figure A.27.

Lemma A.5 (Existence of pullbacks). Given two graph morphisms B → D and
C → D, there exists a graph A and two graph morphisms A→ B and A→ C such
that the resulting diagram is a pullback.

Proof. By Lemma 1 of [30].

49



The following lemmata describe some conditions that guarantee a pushout or
pushout complement to exist, given two morphisms over graphs with partially
labelled nodes. For simplicity, we give more restricted versions of the lemmata
than the ones in the cited paper. This is because we only invoke them in the
context of GP 2 rules, which are restricted to injective morphisms, as well as
totally labelled left and right graphs.

Lemma A.6 (Existence of pushouts). Given an injective graph morphism A ↪→ B
with B a totally labelled graph, and an injective graph morphism A ↪→ C that
preserves undefinedness, there exists a graph D and two graph morphisms B ↪→ D
and C ↪→ D such that the resulting diagram is a pushout.

Proof. By Lemma 2 of [30].

Lemma A.7 (Existence, uniqueness of natural PO complements). Given an injec-
tive graph morphism B ↪→ D and inclusion A ↪→ B with B and D totally labelled
graphs, there exists a graph C with two injective graph morphisms A ↪→ C and
C ↪→ D such that the resulting diagram is a natural pushout if and only if B ↪→ D
satisfies the dangling condition with respect to A ↪→ B. Moreover, in this case,
graph C is unique up to isomorphism.

Proof. By Lemma 4 of [30].

The following lemmata are particularly useful in the correctness proofs for the
various transformations of ME-conditions (see Section 4.3).

Lemma A.8 (Basic (de)compositions). The following (de)compositions relate to
the commutative diagram in Figure A.28, in which all the graph morphisms are
injective.

Pushout/pullback composition. If (1) and (2) are pushouts (resp. pullbacks) then
the composite diagram (1)+(2) is a pushout (resp. pullback).

Pushout decomposition. If (1)+(2) and (1) are pushouts, then (2) is also a pushout.

Pullback decomposition. If (1)+(2) and (2) are pullbacks, then (1) is also a pull-
back.

Proof. Diagram chase (see e.g. [50]).
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Figure A.7: Commutative diagram of injective graph morphisms

!

PROOF. Diagram chase (see e.g. [2]).

The following decompositions are more specialised to our context, in that they consider
whether morphisms preserve undefinedness and also the naturalness of pushouts.

Lemma A.9 (Special decompositions). The following decompositions relate to the commuta-
tive diagram in Figure A.7, in which all the graph morphisms are injective, and B,D, F are totally
labelled graphs.

Pushout-pullback decomposition If (1)+(2) is a pushout, A → C → E is undefinedness pre-
serving, and (2) is a pullback, then (1) and (2) are natural pushouts.

Pullback decomposition If (1)+(2) and (1) are pushouts and A → C → E is undefinedness
preserving, then (1) and (2) are pullbacks.

!

PROOF. Habel and Plump [25] prove that the category of partially labelled graphs and their
morphisms form a so-called M,N-adhesive category. The decompositions are properties of
M,N-adhesive categories (see Theorem 1 in [25]1).
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1The second decomposition is given only in the long version of the authors’ paper.

Figure A.28: Commutative diagram of injective graph morphisms

The following decompositions are more specialised to our context, in that they
consider whether morphisms preserve undefinedness and also the naturalness of
pushouts.

Lemma A.9 (Special decompositions). The following decompositions relate to
the commutative diagram in Figure A.28, in which all the graph morphisms are
injective, and B,D, F are totally labelled graphs.

Pushout-pullback decomposition. If (1)+(2) is a pushout, A → C → E is unde-
finedness preserving, and (2) is a pullback, then (1) and (2) are natural pushouts.

Pullback decomposition. If (1)+(2) and (1) are pushouts and A → C → E is
undefinedness preserving, then (1) and (2) are pullbacks.

Proof. Habel and Plump [52] prove that the category of partially labelled graphs
and their morphisms form a so-calledM,N-adhesive category. The decomposi-
tions are properties ofM,N-adhesive categories (see Theorem 1 in [52]2).

B. Proofs for Weakest Precondition Lemmata

The proof of Lemma 4.12 relies on the following more general lemma, stat-
ing that a ME-condition can be shifted along an injective morphism. The proof
approach is based on that of transformation A from [7].

Lemma B.1 (Shifting ME-conditions). Let p : P ↪→ P′ and p′′ : (P′)p′′,α ↪→
G denote injective morphisms with P, P′ ∈ G(RG), G ∈ G(L), and dom(α) =

vars(P′). Let c denote a ME-condition over P labelled over lists of variables.
Then,

2The second decomposition is given only in the long version of the authors’ paper.
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p′′ |=α Shift′(p, c) if and only if p′′ ◦ pp′′,α |=α c.

Proof. (Induction basis) Suppose c has the form true. Then p′′ |=α Shift′(p, c) =

true and p′′ ◦ pp′′,α |=α true.
Suppose c is an assignment constraint γ. Then p′′ |=α Shift′(p, c) = γ if and

only if γp′′,α = true if and only if p′′ ◦ pp′′,α |=α γ.
(Induction step; =⇒) Assume that p′′ |=α Shift′(p, c).
Suppose c has the form ∃Lx.c′. Then p′′ |=α ∃Lx.Shift′(p, c′). By definition

of |=, there exists some l ∈ L such that p′′ |=α[x 7→l] Shift′(p, c′) By induction
hypothesis, p′′ ◦ pp′′,α |=α[x 7→l] c′. By definition of |=, we get the result that p′′ ◦
pp′′,α |=α ∃Lx.c′ and thus p′′ ◦ pp′′,α |=α c. (Analogous for case ∃V and ∃E.)

Finally, suppose that c has the form ∃a : P ↪→ C.c′. There exists some σ ∈ Σ

and e ∈ εσ such that:

p′′ : (P′)p′′,α ↪→ G |=α ∃b : P′ ↪→ E. Shift′(s : Cσ ↪→ E, c′σ)

There exists a morphism q′′ : Eq′′,α ↪→ G with p′′ = q′′ ◦ bq′′,α. Define q′ =

q′′ ◦ sq′′,α and p′ = p′′ ◦ pp′′,α. By construction and the definition of list expression
evaluation, (a′)q′′,α ◦ pp′′,α = qq′′,α ◦ aq′′,α is a pushout (1) (Figure B.29), sq′′,α =

eq′′,α ◦ qq′′,α, and bq′′,α = eq′′,α ◦ (a′)q′′,α. Together, p′′ ◦ pp′′,α = p′ = q′ ◦ aq′′,α and
p′′ ◦ pp′′,α |=α ∃a. By assumption, q′′ |=α Shift′(s : Cσ ↪→ E, c′σ). By induction
hypothesis, q′ = q′′ ◦ sq′′,α |=α c′σ. By the assumption and definition of |=, we get
the result that p′′ ◦ pp′′,α |=α ∃a.c′.

For Boolean formulae over ME-conditions, the result is obtained from the
definitions and induction hypothesis.

(Induction step;⇐=) Assume that p′′ ◦ pp′′,α |=α c. Define p′ = p′′ ◦ pp′′,α.
Suppose c has the form ∃Lx.c′. By assumption and definition of |=, for some l ∈

L, p′ |=α[x 7→l] c′. By induction hypothesis, p′′ |=α[x7→l] Shift′(p, c′). By definition
of |=, we get p′′ |=α ∃Lx.Shift′(p, c′) and thus the result that p′′ |=α Shift′(p, c).
(Analogous for case ∃V and ∃E.)

Finally, suppose that c has the form ∃a : P ↪→ C.c′. By assumption, there
exists a morphism q′ : Cq′,α ↪→ G such that q′ ◦ aq′,α = p′. Let σ denote a
substitution from Σ for which α(xi) = eq′,α

i for each xi 7→ ei. (Given that () ∈ Σ,
such a substitution will always exist.) From the construction and definition of list
evaluation, we obtain pushout graph (C′σ)q′,α along with the morphisms (a′)q′,α :
(P′)p′′,α ↪→ (C′σ)q′,α and qq′,α : (Cσ)q′,α ↪→ (C′σ)q′,α. As q′ ◦ aq′,α = p′ = p′′ ◦ pp′′,α,
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P p00,↵
<latexit sha1_base64="I6+JfycpeqwLeIsyrqfbAEz0MXk=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSL1IGW3CnosevFYwX5Auy3ZNNuGZrMhySpl6f/w4kERr/4Xb/4b03YP2vpg4PHeDDPzAsmZNq777aysrq1vbOa28ts7u3v7hYPDho4TRWidxDxWrQBrypmgdcMMpy2pKI4CTpvB6HbqNx+p0iwWD2YsqR/hgWAhI9hYqVvrprJUOu9gLod40isU3bI7A1omXkaKkKHWK3x1+jFJIioM4VjrtudK46dYGUY4neQ7iaYSkxEe0LalAkdU++ns6gk6tUofhbGyJQyaqb8nUhxpPY4C2xlhM9SL3lT8z2snJrz2UyZkYqgg80VhwpGJ0TQC1GeKEsPHlmCimL0VkSFWmBgbVN6G4C2+vEwalbJ3Ua7cXxarN1kcOTiGEzgDD66gCndQgzoQUPAMr/DmPDkvzrvzMW9dcbKZI/gD5/MHr1CR/A==</latexit>

(P 0)p00,↵
<latexit sha1_base64="Q3klMeLKAQ4fNOlX/hgWvDbcKq0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSzSClKSKuix6MVjBfsBbSyT7bZdukmW3Y1SYn+KFw+KePWXePPfuG1z0NYHA4/3ZpiZ5wvOlHacbyuzsrq2vpHdzG1t7+zu2fn9hopiSWidRDySLR8U5Sykdc00py0hKQQ+p01/dD31mw9UKhaFd3osqBfAIGR9RkAbqWvnS7XiyX0iisXTDnAxhEnXLjhlZwa8TNyUFFCKWtf+6vQiEgc01ISDUm3XEdpLQGpGOJ3kOrGiAsgIBrRtaAgBVV4yO32Cj43Sw/1Imgo1nqm/JxIIlBoHvukMQA/VojcV//Pase5fegkLRaxpSOaL+jHHOsLTHHCPSUo0HxsCRDJzKyZDkEC0SStnQnAXX14mjUrZPStXbs8L1as0jiw6REeohFx0garoBtVQHRH0iJ7RK3qznqwX6936mLdmrHTmAP2B9fkDU5iSww==</latexit>

Eq00,↵
<latexit sha1_base64="83kmfj2632cdA/QvIN/paArKqx8=">AAAB9XicbVDJSgNBEK1xjXGLevTSGCQeJMxEQY9BETxGMAtko6bTkzTpWezuUcKQ//DiQRGv/os3/8ZOMgdNfFDweK+KqnpuJLjStv1tLS2vrK6tZzaym1vbO7u5vf2aCmNJWZWGIpQNFxUTPGBVzbVgjUgy9F3B6u7weuLXH5lUPAzu9ShibR/7Afc4RW2kzk0neSgUTlsoogGOu7m8XbSnIIvESUkeUlS6ua9WL6SxzwJNBSrVdOxItxOUmlPBxtlWrFiEdIh91jQ0QJ+pdjK9ekyOjdIjXihNBZpM1d8TCfpKjXzXdPqoB2rem4j/ec1Ye5fthAdRrFlAZ4u8WBAdkkkEpMclo1qMDEEqubmV0AFKpNoElTUhOPMvL5JaqeicFUt35/nyVRpHBg7hCE7AgQsowy1UoAoUJDzDK7xZT9aL9W59zFqXrHTmAP7A+vwBn6OR8g==</latexit>

G
<latexit sha1_base64="znlNvdKUuTj8xBn7KQjYldwg35s=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BD3pMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A51DjM8=</latexit>

(1)
<latexit sha1_base64="3U57pcNjj0WdDTBVMFQT2+ffjcM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZS9816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3UaneX5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4AQQmNHg==</latexit>

pp00,↵
<latexit sha1_base64="SxxRgJXln+C5cBo4IMH9DvcDMn0=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSL1IGW3CvZY8OKxgv2AdluyabYNzWZDklXK0v/hxYMiXv0v3vw3pu0etPXBwOO9GWbmBZIzbVz321lb39jc2s7t5Hf39g8OC0fHTR0nitAGiXms2gHWlDNBG4YZTttSURwFnLaC8e3Mbz1SpVksHsxEUj/CQ8FCRrCxUk/2UlkqXXYxlyM87ReKbtmdA60SLyNFyFDvF766g5gkERWGcKx1x3Ol8VOsDCOcTvPdRFOJyRgPacdSgSOq/XR+9RSdW2WAwljZEgbN1d8TKY60nkSB7YywGellbyb+53USE1b9lAmZGCrIYlGYcGRiNIsADZiixPCJJZgoZm9FZIQVJsYGlbcheMsvr5JmpexdlSv318VaNYsjB6dwBhfgwQ3U4A7q0AACCp7hFd6cJ+fFeXc+Fq1rTjZzAn/gfP4A3m6SEg==</latexit>

p00
<latexit sha1_base64="xviQHQv0wYnh+uG9PefGV9VasY0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjF4IrtoIkcSLx4xyiOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnIbm1vbO/ndwt7+weFR8fikZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38799hPXRsTqEScJ9yM6VCIUjKKVHpJyuV8suRV3AbJOvIyUIEOjX/zqDWKWRlwhk9SYrucm6E+pRsEknxV6qeEJZWM65F1LFY248aeLU2fkwioDEsbalkKyUH9PTGlkzCQKbGdEcWRWvbn4n9dNMaz5U6GSFLliy0VhKgnGZP43GQjNGcqJJZRpYW8lbEQ1ZWjTKdgQvNWX10mrWvGuKtX761K9lsWRhzM4h0vw4AbqcAcNaAKDITzDK7w50nlx3p2PZWvOyWZO4Q+czx+ZfY1Q</latexit>

q0
<latexit sha1_base64="1bOacZsu9drl/hU3Yu5nFt4PxX0=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjF6IrtoIkcSLx7RyCOBDZkdemHC7Ow6M2tCCH/gxYPGePWPvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaHSPJYPZpygH9GB5CFn1Fjp/vG8Vyy5ZXcOskq8jJQgQ71X/Or2Y5ZGKA0TVOuO5ybGn1BlOBM4LXRTjQllIzrAjqWSRqj9yfzSKTmzSp+EsbIlDZmrvycmNNJ6HAW2M6JmqJe9mfif10lNWPUnXCapQckWi8JUEBOT2dukzxUyI8aWUKa4vZWwIVWUGRtOwYbgLb+8SpqVsndZrtxdlWrVLI48nMApXIAH11CDW6hDAxiE8Ayv8OaMnBfn3flYtOacbOYY/sD5/AE6aY0g</latexit>

p0
<latexit sha1_base64="1D+h4HEPjqMogJZvafkS0xLFdZg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KkkV7LHgxWMV+wFtKJvtpl262YTdiVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSQ3LRL5XdijsHWSVeTsqQo9EvffUGMUsjrpBJakzXcxP0M6pRMMmnxV5qeELZmA5511JFI278bH7plJxbZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDmp8JlaTIFVssClNJMCazt8lAaM5QTiyhTAt7K2EjqilDG07RhuAtv7xKWtWKd1Wp3l+X67U8jgKcwhlcggc3UIc7aEATGITwDK/w5oydF+fd+Vi0rjn5zAn8gfP5AzjkjR8=</latexit>

sq00,↵
<latexit sha1_base64="BYdioV5I6+q+0yzNUrNC2Ir90YQ=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIjF4MGQXTeRI4sUjJvJIYCG9wwATZh/OzGrIhv/w4kFjvPov3vwbB9iDgpV0UqnqTneXFwmutG1/W5m19Y3Nrex2bmd3b/8gf3jUUGEsKavTUISy5aFiggesrrkWrBVJhr4nWNMb38z85iOTiofBvZ5EzPVxGPABp6iN1FXd5KFYvOigiEY47eULdsmeg6wSJyUFSFHr5b86/ZDGPgs0FahU27Ej7SYoNaeCTXOdWLEI6RiHrG1ogD5TbjK/ekrOjNIng1CaCjSZq78nEvSVmvie6fRRj9SyNxP/89qxHlTchAdRrFlAF4sGsSA6JLMISJ9LRrWYGIJUcnMroSOUSLUJKmdCcJZfXiWNcsm5LJXvrgrVShpHFk7gFM7BgWuowi3UoA4UJDzDK7xZT9aL9W59LFozVjpzDH9gff4A5K+SFg==</latexit>

bq00,↵
<latexit sha1_base64="+69iUenSs5vtirOp5/vZfaWtpiY=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIjF4MGQXTeRI4sUjJvJIYCG9wwATZh/OzGrIhv/w4kFjvPov3vwbB9iDgpV0UqnqTneXFwmutG1/W5m19Y3Nrex2bmd3b/8gf3jUUGEsKavTUISy5aFiggesrrkWrBVJhr4nWNMb38z85iOTiofBvZ5EzPVxGPABp6iN1PW6yUOxeNFBEY1w2ssX7JI9B1klTkoKkKLWy391+iGNfRZoKlCptmNH2k1Qak4Fm+Y6sWIR0jEOWdvQAH2m3GR+9ZScGaVPBqE0FWgyV39PJOgrNfE90+mjHqllbyb+57VjPai4CQ+iWLOALhYNYkF0SGYRkD6XjGoxMQSp5OZWQkcokWoTVM6E4Cy/vEoa5ZJzWSrfXRWqlTSOLJzAKZyDA9dQhVuoQR0oSHiGV3iznqwX6936WLRmrHTmGP7A+vwByg6SBQ==</latexit>

q00
<latexit sha1_base64="eF+l/8TCI/Aku3YAz5ozd31M6qs=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzFYkTs0kZLExhKjIAlcyN4yBxv29s7dPRNC+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ndza+sbmVn67sLO7t39QPDxq6ThVDJssFrFqB1Sj4BKbhhuB7UQhjQKBD8HoeuY/PKHSPJb3ZpygH9GB5CFn1Fjp7rFc7hVLbsWdg6wSLyMlyNDoFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE9b8CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5JWteJdVKq3l6V6LYsjDydwCufgwRXU4QYa0AQGA3iGV3hzhPPivDsfi9ack80cwx84nz+bA41R</latexit>

eq00,↵
<latexit sha1_base64="IqUm+hbeqCWhvbs3ZuMwXcmc+4k=">AAAB9XicbVDLTgJBEJzFF+IL9ehlIjF4MGQXTeRI4sUjJvJIYCG9QwMTZh/OzGrIhv/w4kFjvPov3vwbB9iDgpV0UqnqTneXFwmutG1/W5m19Y3Nrex2bmd3b/8gf3jUUGEsGdZZKELZ8kCh4AHWNdcCW5FE8D2BTW98M/ObjygVD4N7PYnQ9WEY8AFnoI3UxW7yUCxedEBEI5j28gW7ZM9BV4mTkgJJUevlvzr9kMU+BpoJUKrt2JF2E5CaM4HTXCdWGAEbwxDbhgbgo3KT+dVTemaUPh2E0lSg6Vz9PZGAr9TE90ynD3qklr2Z+J/XjvWg4iY8iGKNAVssGsSC6pDOIqB9LpFpMTEEmOTmVspGIIFpE1TOhOAsv7xKGuWSc1kq310VqpU0jiw5IafknDjkmlTJLamROmFEkmfySt6sJ+vFerc+Fq0ZK505Jn9gff4AzsGSCA==</latexit>

(a0)q00,↵
<latexit sha1_base64="mQ2anqq1ca9tIwkGcfmZblDMkTs=">AAAB+nicbVBNS8NAEN34WetXqkcvi0VaQUpSBXssePFYwX5AG8tku22XbjZxd6OU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbm+RFnSjvOt7Wyura+sZnZym7v7O7t27mDhgpjSWidhDyULR8U5UzQumaa01YkKQQ+p01/dDX1mw9UKhaKWz2OqBfAQLA+I6CN1LVzRSic3iX3hcJZB3g0hEnXzjslZwa8TNyU5FGKWtf+6vRCEgdUaMJBqbbrRNpLQGpGOJ1kO7GiEZARDGjbUAEBVV4yO32CT4zSw/1QmhIaz9TfEwkESo0D33QGoIdq0ZuK/3ntWPcrXsJEFGsqyHxRP+ZYh3iaA+4xSYnmY0OASGZuxWQIEog2aWVNCO7iy8ukUS6556XyzUW+WknjyKAjdIyKyEWXqIquUQ3VEUGP6Bm9ojfryXqx3q2PeeuKlc4coj+wPn8AbOeSyw==</latexit>

qq00,↵
<latexit sha1_base64="NGsMZnQk9fO/vvx+K9Rb5vIB1F4=">AAAB9XicbVBNT8JAEJ36ifiFevTSSAweDGnRRI4kXjxiIh8JFDJdFtiw3ZbdrYY0/A8vHjTGq//Fm//GBXpQ8CWTvLw3k5l5fsSZ0o7zba2tb2xubWd2srt7+weHuaPjugpjSWiNhDyUTR8V5UzQmmaa02YkKQY+pw1/dDvzG49UKhaKBz2JqBfgQLA+I6iN1Bl3knGhcNlGHg1x2s3lnaIzh71K3JTkIUW1m/tq90ISB1RowlGplutE2ktQakY4nWbbsaIRkhEOaMtQgQFVXjK/emqfG6Vn90NpSmh7rv6eSDBQahL4pjNAPVTL3kz8z2vFul/2EiaiWFNBFov6Mbd1aM8isHtMUqL5xBAkkplbbTJEiUSboLImBHf55VVSLxXdq2Lp/jpfKadxZOAUzuACXLiBCtxBFWpAQMIzvMKb9WS9WO/Wx6J1zUpnTuAPrM8f4Y2SFA==</latexit>

aq00,↵
<latexit sha1_base64="6IRj78Li+p6hmDpjB6zdNV9lciI=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIjF4MGQXTeRI4sUjJvJIYCG9wwATZh/OzGrIhv/w4kFjvPov3vwbB9iDgpV0UqnqTneXFwmutG1/W5m19Y3Nrex2bmd3b/8gf3jUUGEsKavTUISy5aFiggesrrkWrBVJhr4nWNMb38z85iOTiofBvZ5EzPVxGPABp6iN1MVu8lAsXnRQRCOc9vIFu2TPQVaJk5ICpKj18l+dfkhjnwWaClSq7diRdhOUmlPBprlOrFiEdIxD1jY0QJ8pN5lfPSVnRumTQShNBZrM1d8TCfpKTXzPdPqoR2rZm4n/ee1YDypuwoMo1iygi0WDWBAdklkEpM8lo1pMDEEqubmV0BFKpNoElTMhOMsvr5JGueRclsp3V4VqJY0jCydwCufgwDVU4RZqUAcKEp7hFd6sJ+vFerc+Fq0ZK505hj+wPn8AyH2SBA==</latexit>

g
<latexit sha1_base64="WUTGfBlIywQG06OT9zOu28DvMzY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUHA1KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJt3pTrtTyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBysGM5Q==</latexit>

(C 0�)q00,↵
<latexit sha1_base64="O6hgYsXXpZJfa0NbBlhXqDh14oU=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EirSAlqYIei714rGA/oEnLZLttl+4mcXcjlFAv/hUvHhTx6r/w5r9x2+ag1QcDj/dmmJnnR4xKZdtfRmZpeWV1Lbue29jc2t4xd/caMowFJnUcslC0fJCE0YDUFVWMtCJBgPuMNP1Rdeo374mQNAxu1TgiHodBQPsUg9JS1zwoVgsdV9IBh5NOclconLrAoiFMumbeLtkzWH+Jk5I8SlHrmp9uL8QxJ4HCDKRsO3akvASEopiRSc6NJYkAj2BA2poGwIn0ktkHE+tYKz2rHwpdgbJm6s+JBLiUY+7rTg5qKBe9qfif145V/9JLaBDFigR4vqgfM0uF1jQOq0cFwYqNNQEsqL7VwkMQgJUOLadDcBZf/ksa5ZJzVirfnOcrV2kcWXSIjlAROegCVdA1qqE6wugBPaEX9Go8Gs/Gm/E+b80Y6cw++gXj4xu0H5XI</latexit>

(C�)q00,↵
<latexit sha1_base64="evqKuTB9g3NVEM4E3fU6Wk2hJDc=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFWkFKUgVdFrtxWcE+oEnLzXTSDp08nJkIJWTjr7hxoYhbP8Odf+O0zUJbD1w4nHMv997jRowKaZrfWm5ldW19I79Z2Nre2d3T9w9aIow5Jk0cspB3XBCE0YA0JZWMdCJOwHcZabvj+tRvPxIuaBjcy0lEHB+GAfUoBqmkvn5UrvdsQYc+nPWSh1Lp3AYWjSDt60WzYs5gLBMrI0WUodHXv+xBiGOfBBIzEKJrmZF0EuCSYkbSgh0LEgEew5B0FQ3AJ8JJZg+kxqlSBoYXclWBNGbq74kEfCEmvqs6fZAjsehNxf+8biy9ayehQRRLEuD5Ii9mhgyNaRrGgHKCJZsoAphTdauBR8ABS5VZQYVgLb68TFrVinVRqd5dFms3WRx5dIxOUBlZ6ArV0C1qoCbCKEXP6BW9aU/ai/aufcxbc1o2c4j+QPv8AVA2lZc=</latexit>

Figure B.29: Instantiating the construction with assignments

the pushout guarantees the existence of a unique morphism g : (C′σ)q′,α → G with
p′′ = g ◦ (a′)q′,α and q′ = g ◦ qq′,α. Consider y ◦ x = g, a surjective-injective
factorisation of g with x : (C′σ)q′,α → X surjective and y : X ↪→ G injective. There
is a surjective morphism e : (C′)σ → E such that Eq′′,α = X, as the substitution
ensures list expressions equal under α can be merged at the syntactic level. Thus,
there is a morphism q′′ : Eq′′,α ↪→ G such that q′′ = y and (C′σ)q′,α = (C′σ)q′′,α.
Define sq′′,α = eq′′,α ◦ qq′′,α and bq′′,α = eq′′,α = (a′)q′′,α. Together, p′′ = g ◦ (a′)q′′,α,
g = q′′ ◦ eq′′,α, and b = eq′′,α ◦ (a′)q′′,α yield p′′ = q′′ ◦ bq′′,α, i.e. p′′ |=α ∨

e∈εσ ∃b :
P′ ↪→ E. By assumption (q′ = q′′ ◦ sq′′,α |=α (c′)σ) and induction hypothesis,
we have q′′ |=α Shift′(s, (c′)σ). Together, we get p′′ |=α ∨

σ∈Σ
∨

e∈εσ ∃b : P′ ↪→
E.Shift′(s, (c′)σ), and finally the result, p′′ |=α Shift′(p, c).

For Boolean formulae over ME-conditions, the result is obtained from the
definitions and induction hypothesis.

The proof of Lemma 4.17 relies on a more general lemma about the Right’.
The proof approach is based on that of transformation L’ from [25].

Lemma B.2 (Transformation Right’). Let r = 〈L ←↩ K ↪→ R〉 denote a rule
schema and c a ME-condition over L. Then, for every direct derivation G ⇒r,g,h H
with g : Lg,α ↪→ G, h : Rg,α ↪→ H, dom(α) = FV(c), and membership set M for
items in L \ R,
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g : Lg,αM ↪→ G |=αM c if and only if h : Rg,α ↪→ H |=α Right′(r, c,M).

Here, αM is defined as α except for items x ∈ L \ R, where g(x) ∈ αM(X) if and
only if (x, X) ∈ M.

Proof. (Induction basis) Suppose c has the form true. Then g |=αM c if and only
if h |=α Right′(r, c,M) = true.

Suppose c is an assignment constraint γ. If γ is a path predicate, then the result
follows from Lemma 4.14. If γ has the form x ∈ X, then g |=αM c if and only if
γg,αM if and only if (x, X) ∈ M if and only if h |=α Right′(r, c,M). If γ is a (relation
over) a list expression, then the statement is clear other than for expressions e
interpreted with respect to a morphism (i.e. indeg, outdeg, and card). This can
be proven by showing that eg,αM evaluates to the same integer after applying h, α
to the substituted expression (clear by case analysis).

(Induction step; =⇒) Suppose c has the form ∃Lx.c′. By assumption, g |=αM[x 7→l]

c′ for some l ∈ L. By induction hypothesis, h |=α[x7→l] Right′(r, c′,M). By the defi-
nition of |=, we get the result that h |=α ∃Lx.Right′(r, c′,M).

Suppose c has the form ∃VX.c′. By the definition of |=, there exists some
V ⊆ VG such that g |=αM[X7→V] c′. Define M′ = {(v, X) | v ∈ VL \ VR ∧ g(v) ∈ V}
and V	 = V \ (VG \ VD). Define α′ = α[X 7→ V	]. We have α′M∪M′ = αM[X 7→
V	∪{g(v) | (v, X) ∈ M′}]. Observe that g |=α′M∪M′ c′. By induction hypothesis, h |=α′

Right′(r, c′,M∪M′). Clearly, M′ ∈ 2MV , and so h |=α′ ∨
M′∈2MV Right′(r, c′,M∪M′).

By definition of |=, we get the result h |=α ∃VX.∨M′∈2MV Right′(r, c′,M ∪ M′) =

Right(r, c,M).
Finally, suppose c has the form ∃a : P ↪→ C.c′. By assumption, there is

a morphism q : Xg,αM ↪→ G with q ◦ a = g and q |=αM c′. Following the
proof of Theorem 6 in [7], and with the fact that Rg,αM = (R⊕)h,αM , we derive
a morphism q′ : Yq′,αM ↪→ H with q′ ◦ bq′,αM = h, i.e. h |=αM ∃b. As the
morphism b does not contain any node/edge-set variables, h |=α ∃b. By in-
duction hypothesis, q′ |=α Right′(r∗, c′,M). Together, we have the result that
h |=α ∃b.Right′(r∗, c′,M) = Right′(r, c,M). (For the case where 〈K ↪→ L, a〉 has
no natural pushout complement, the result can be proven by contradiction [7].)

(Induction step;⇐=) Suppose c has the form ∃Lx.c′. By assumption and con-
struction, h |=α ∃Lx.Right′(r, c′,M). By definition of |=, h |=α[x7→l] Right′(r, c′,M)
for some l ∈ L. By induction hypothesis, g |=αM[x 7→l] c′. By definition of |=, we get
the result that g |=αM ∃Lx.Right′(r, c′,M).
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Suppose c has the form ∃VX.c′. By assumption and construction, there exists
some M′ such that h |=α ∃VX.Right′(r, c′,M ∪M′). By definition of |=, there exists
some V ⊆ VG such that h |=α[X7→V] Right′(r, c′,M ∪ M′). By induction hypothesis,
g |=αM∪M′ [X7→V] c′. Observe that αM∪M′[X 7→ V] = αM[X 7→ V ∪ {g(v) | (v, X) ∈ M′}].
By definition of |=, get the result that g |=αM ∃VX.c′. (Analogous for case ∃E.)

Finally, suppose c has the form ∃a : P ↪→ C.c′. By assumption, h |=α

∃b.Right′(r∗, c′,M). There is a morphism q′ : Yq′,α ↪→ H with q′ ◦ bq′,α = h
and q′ |=α Right′(r∗, c′,M). Following the proof of Theorem 6 in [7], we derive
a morphism q : Xq,α ↪→ G with q ◦ aq,α = g, i.e. g |=α ∃a. As the morphism
does not contain any node/edge-set variables, g |=αM ∃a. By induction hypothe-
sis, q |=αM c′. Together, we get the result that g |=αM ∃a.c′. (For the case where
〈K ↪→ L, a〉 has no natural pushout complement, the result can be proven by con-
tradiction [7].)
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