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Boosting adversarial training in safety-critical
systems through boundary data selection

Yifan Jia1, Christopher M. Poskitt2, Peixin Zhang2,∗, Jingyi Wang1,∗, Jun Sun2, and Sudipta Chattopadhyay3

Abstract—AI-enabled collaborative robots are designed to be
used in close collaboration with humans, thus requiring stringent
safety standards and quick response times. Adversarial attacks
pose a significant threat to the deep learning models of these
systems, making it crucial to develop methods to improve the
models’ robustness against them. Adversarial training is one
approach to improve their robustness: it works by augmenting
the training data with adversarial examples. This, unfortunately,
comes with the cost of increased computational overhead and
extended training times. In this work, we balance the need
for additional adversarial data with the goal of minimizing the
training costs by selecting the most ‘valuable’ data for adversarial
training. In particular, we propose a robustness-oriented bound-
ary data selection method, RAST-AT, which stands for robust
and fast adversarial training. RAST-AT selects training data near
to the boundary by considering adversarial perturbations. Our
method improves the speed of model training on CIFAR-10 by
68.67%, and compared to other data selection methods, has 10%
higher accuracy with 10% training data selected, and 7% higher
robustness with 4% training data selected. Our method also
significantly improves efficiency by at least 25% in adversarial
training, with the same performance. Finally, we evaluate our
method on a cobot system, generating adversarial patches as
attacks, and adopting RAST-AT as the defense. We find that
RAST-AT can defend against 60% of untargeted attacks and
20% of targeted attacks. Our work highlights the benefits of
developing effective defenses against adversarial attacks to ensure
the security and reliability of AI-powered safety-critical systems.

Index Terms—data selection, AI-enabled industrial systems,
trustworthy systems, adversarial training

I. INTRODUCTION

DEEP Neural Network (DNN) models are increasingly
used in robotics for automation, such as object detec-

tion [1]–[3] and intrusion detection [4], [5]. However, the
use of DNN models also exposes such systems to adversarial
attacks [6], [7], which can have severe consequences. To
ensure the safety and security of industrial systems, it is crucial
to train AI models to be robust against these attacks. The
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Fig. 1. An illustration of data selection for active learning, adversarial training
and our new method, RAST-AT

importance of robustness in AI models for industrial systems
has been highlighted in many works [8]–[11]. One potential
solution to achieve robustness is adversarial training [12], [13],
where the model is trained considering adversarial examples
in the training data.

However, this process can be costly, especially for large
real-world datasets that are commonly used in industrial
systems. To illustrate, a substantial amount of data—around
40,000 card images obtained on a daily basis—is required
to train the DNN responsible for controlling a robotic arm.
Nevertheless, obtaining this sizable dataset entails notable
expenses in the form of time, hardware resources (such as
GPUs), and human effort for labeling. Additionally, creating
adversarial examples, which play a vital role in constructing a
sturdy AI model, can be a lengthy undertaking. As a result, it
is crucial to establish an efficient training process that yields an
accurate and robust AI model while minimizing the resources
expended. To address this problem, some works [14], [15]
aim to reduce the training time by minimizing the number of
iterations. Nevertheless, the enormous training data set still
needs huge human labeling efforts and training time.

Active learning, as proposed by Cohn et al. [16], is one
approach to reduce the cost of adversarial training by selecting
partial training data to label. The basic premise is that, after
an initial model is learned, the learner selects new data
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for labeling that will most effectively improve the model’s
performance, thus reducing the size of the training data and
minimizing the need for human labeling efforts.

Although active learning can be helpful in selecting data,
the selection method typically focuses on time and accuracy
and ignores robustness [17]. To be able to train on less data
while still obtaining an accurate and robust model, the selected
data has to be more ‘important’ and valuable than the rest.
Compared with uniformly distributed data, data closer to the
boundary provides more information for model training [13].

Moreover, data that is far away from the decision boundary
does not need to be labeled as long as the boundary data
can provide enough information to calculate the optimal so-
lution [18]. However, measuring how far a data point is from
the decision boundary is difficult for deep neural networks
because their decision boundaries are of high dimensionality.

Therefore, selecting boundary data for adversarial training
is a potential solution, as boundary data is more sensitive to
adversarial attacks [13], [19]. Existing boundary data selection
methods [19], [20] select data by considering the probability
ratio of the predicted classes or adding perturbations randomly
to check the predicted class of noisy data. They are designed
to maintain accuracy but never consider robustness.

We present RAST-AT, a robust and fast technique for
DNN adversarial training. Considering accuracy, efficiency,
and robustness, RAST-AT selects data that is able to generate
adversarial examples, as shown in Figure 1. Active learning
selects training samples to label by some oracles, reducing data
size and label effort. Adversarial training selects all training
samples with their adversarial data to increase the robustness
of the model against perturbations. Utilizing the advantages
of these two methods, we propose RAST-AT, which selects
robustness-oriented boundary data with their adversarial ex-
amples for adversarial training. RAST-AT greatly reduces the
training time while still preserving robustness.

Our method outperforms previous adversarial training meth-
ods with higher accuracy, and is more time-efficient, achieving
comparable results in 42.55s vs. 149.00s for PGD-AT and
86.48s for FAST-AT. RAST-AT demonstrates its robustness in
defending against 60% of untargeted and 20% of targeted ad-
versarial patch attacks in an object detector for a robotic arm.

The contributions of this work include:
• We propose a boundary data selection method (RAST-

AT) to improve the model training efficiency while main-
taining accuracy and robustness.

• We use the selected data to train different models to prove
the method can be used to select more ‘important’ data
for model training.

• We compare our method with boundary data selection
methods (BSS [19] and SALT [9]) that show that RAST-
AT has higher accuracy when the same amount of data
is selected.

• We compare our method with other adversarial training
methods (PGD-AT and FAST-AT [14]) to prove that
RAST-AT matches the robustness but greatly reduces
training time.

• We apply our method to an industrial system, a robotic
arm with an object detector, to show the capability for

object detection and feasibility for a practical application.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the background and some key
related work on speeding up model training and data selection
for DNN model training. Furthermore, we review key works
on boundary data selection methods and adversarial examples.

A. Adversarial training

Note that to distinct adversarial attack and adversarial
training, we add ”-AT” for adversarial training. For example,
RAST-AT represents RAST adversarial training. PGD repre-
sents PGD attack and PGD-AT is for PGD adversarial training.
In this work, robustness refers to the accuracy of the model
after being attacked by taking adversarial examples as input.

Adversarial examples were discovered by Szegedy et
al. [21], and following this, Goodfellow et al. [22] proposed
the Fast Gradient Sign Method (FGSM) to generate adversarial
examples with a one-step attack. This work was improved
by adding more steps as iFGSM [23]. The effectiveness of
iterative attacks can be further enhanced by utilizing random
initialization, as demonstrated by the Projected Gradient De-
scent (PGD) [24]. By training with a mixture of adversarial
and clear data, adversarial training improves the model’s
robustness against adversarial attacks.

Due to the need to generate adversarial examples and
expand the training data size, adversarial training is costly
and time-consuming. The work of Bai et al. [25] summarises
a few recent efficient adversarial training works. Shafahi et
al. first proposed free adversarial training (Free-AT) [15]
by updating both model parameters and image perturbations
simultaneously. Expanding on Free-AT, Wong et al. introduced
FAST-AT adversarial training [14], which leverages FGSM-
AT with random initialization, proving it as effective as PGD-
AT but much faster. To compare the efficiency of adversarial
training, we select FAST-AT as a benchmark.

B. Boundary data selection for DNN

Boundary data selection is mainly for statistical mod-
els [26]–[28], as interpreting the decision-making process of
DNNs is challenging [29], thus determining their boundaries
is much harder than it is for statistical models.

Existing works on boundary data selection for DNN focus
on either finding the data with maximum entropy or adding
perturbations. Shen et al. [19] propose a method of boundary
sample selection (BSS) to select boundary data for mutation
testing by evaluating the probability ratio of the top two
classes. It will select the data point that has a lower ratio,
which indicates the model has lower confidence to give the
prediction. In contrast, Miller et al. [20] select data by adding
perturbations, which are uniform perturbations to the training
data, and select the data that is able to give maximum
uncertainty. The work also proposes a software architecture,
a Security-oriented Active Learning Testbed (SALT) with the
method. Instead of adding uniform perturbation, we add an
FGSM attack to generate adversarial perturbations. Moreover,
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the above methods select data with maximum uncertainty but
we select the data that is able to be attacked successfully. These
can make sure the perturbations are proficient and therefore
the selected data are safety critical.

We compare our approach to the two works to demonstrate
that an adversarial noise is more efficient in selecting bound-
ary data compared to considering entropy (BSS) and adding
uniform perturbation (SALT).

III. METHODOLOGY

We define the problem formally as follows: given a pre-
trained simple DNN model f and an unlabeled dataset D for
further training, instead of labelling all data points, we want a
sensitivity measurement λ to select a subset Ds ⊂ D to label
and train the model f . The well-trained model fd using dataset
Ds should have accuracy within an error rate δ of model fD
which is trained using the full dataset D.

In this work, we define robustness as the accuracy of the
model after being attacked. For selecting data points that
enhance the model’s robustness during training, we focus on
adversarial examples, which are used for executing adversarial
attacks on AI models. Adversarial examples are input data with
a small perturbation to deceive machine learning models into
misclassifying them. The study of Wang et al. [13] proposes a
method to detect adversarial examples through model mutation
and observe that adversarial data is more ‘sensitive’ than
normal data, demonstrating that data points near the decision
boundary are more sensitive than other points. Consequently,
when subjected to the same noise level, boundary data is
more vulnerable to adversarial attacks than normal data. Note
that the Fast Gradient Sign Method (FGSM) is an adversarial
attack that creates adversarial examples that can cross the
boundary [22]. We, therefore, select data that is able to
generate adversarial examples, i.e. be attacked successfully by
FGSM as boundary data. We then employ the boundary data
and their corresponding adversarial examples as the training
data for adversarial training.

Adversarial examples can be generated by adding adversar-
ial noise to the original data. Adversarial noise is calculated
with the loss of predicted output and targeted/actual output.
For targeted attacks, xadv = x−xnoise. For untargeted attacks,
xadv = x+ xnoise. The formula can be written as:

xadv = x± ϵ · sign(∇xJ(x, y∗)) (1)

where x is the input data point and xadv is the adversarial
example. For targeted attacks, y∗ indicates the targeted clas-
sification and for untargeted attacks, y∗ indicates the actual
classification. In this work, we are more interested in looking
for all the boundary data regardless of which classification it
is, thus we choose untargeted attacks to generate adversarial
examples. The bottom-left image in Figure 1 illustrates the
selected data distribution.

RAST-AT: Our method. Given a model f , we are going to
select the data point x which could successfully generate an
adversarial example with a given attack level ϵ:

x ⊂ D s.t., f(xadv) ̸= f(x)

where xadv = x+ ϵ · sign(∇dJ(x, y∗))
(2)

To prove our hypothesis that boundary data selected with
adversarial examples can greatly improve the efficiency of
adversarial training, we propose a method with three steps.
First, we use FGSM to perform gradient-based adversarial
attacks and determine the noise level’s positive relationship
with the success ratio. Second, we choose data that generates
successful adversarial examples as boundary data. Finally, we
label this boundary data as new training data to update the
model and use it for adversarial training. This data selection
process of RAST-AT is outlined in Algorithm 1.

Algorithm 1 RAST-AT Data Selection
Input: Data D; DNN model f; FGSM-AT step size ϵ
Output: Selected data Ds

1: for data point x in D: do
2: xadv = x+ ϵ · sign(∇dJ(x, y∗))
3: if f(xadv) ̸= f(x) then
4: add x and xadv to Ds

5: end if
6: end for
7: return Ds

Unlike data-driven techniques, our method’s chosen data can
be utilized for various models that have the same objective.
By producing adversarial examples for the training data, we
can assess data sensitivity and opt for more crucial data. It is
noteworthy that our approach falls under weakly supervised
learning, which means precise labels are not required for the
training data. Instead, we depend on the output probability,
which is the output value of the initial model, instead of the
true labels. As a result, humans only need to label the data
that was chosen for training purposes.

Adversarial training. Adversarial training is a deep learning
model training method to train models more robust against
adversarial attacks. Given a neural network f with parameters
θ, the problem can be written as a robust optimization problem,

min
θ

∑
i

max
δ⊂∆

l(fθ(xi + δ), yi) (3)

where l is the loss function and ∆ is the threat model.
From the equation, the process firstly approximates the inner
maximization of the threat model, and then the model param-
eters will update by the gradient descent. FGSM-AT is one
way to approximate the inner maximization with perturbation
calculated from:

δ = ϵ · sign(∇xJ(x, y∗)) (4)

FGSM-AT only calculates one step of the inner maximiza-
tion, while PGD-AT adversarial training involves multiple
steps of the inner maximization. To create a more robust
model, we use the training data together with adversarial
examples.

To compare the effectiveness of our RAST-AT method, we
compare it with Wong et al.’s [14] FAST-AT method and PGD-
AT adversarial training, aligning parameters with their work.
Wong et al. demonstrate that FGSM-AT adversarial training
can be as effective as PGD-AT by using random initialization.
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For FAST-AT with T epochs, we have radius ϵ and step size
α. The noises are initially generated with uniform distribution
and then updated with the following equation:

δ = random(−ϵ, ϵ)

δ = δ + α · sign(∇δl(f(x+ δ), y)
(5)

where α = ϵ = 8/255 according to previous experimental
results. Afterward, we clip the value and add the noises to the
data point as adversarial examples. The adversarial examples
and original data will combine to compose the training dataset.

For PGD-AT training, we update the noise similar to the
FAST-AT, and we use a step size where α = 2/255 and iterate
8 times to update the gradients and noises, which follows the
setting in FAST-AT work [14].

Based on FAST-AT method, RAST-AT selects boundary
data with Algorithm 1 to reduce the data size M , and updates
the model using a different ϵ, where ϵ = λ, which is related to
the sensitivity level. To compare the influence of different data
size, we use λ = 2/255, λ = 4/255, λ = 8/255 separately
to check the difference. We use a DNN model which has a
stochastic gradient descent (SGD) optimizer with a learning
rate = 0.001 and momentum = 0.9. The comparison results
are presented in Section V-C.

IV. PROBLEM FORMULATION: A CASE STUDY

We assessed our approach using a cobot, or collaborative
robot, designed for human-robot interaction in shared environ-
ments [30]. It’s imperative to note these robots often integrate
AI models for complex tasks, but they can be susceptible
to adversarial attacks, emphasizing the importance of system
robustness.1

Our experiment is grounded on the adversarial patch attack
detailed by Jia et al. [31]. This research targeted a robotic
arm’s AI-based object detector with an adversarial patch,
misguiding its object location predictions and leading it to
mistakenly strike a human. We employed RAST-AT to train
our AI model to defend against this specific adversarial attack.

The system utilizes a camera on an industrial robotic arm
(model UR10e) to identify and pick up cards, with detected
card positions analyzed using the YOLO v3 algorithm, guiding
the arm’s actions. Jia et al.’s study [31] highlighted the
vulnerabilities of deep learning models in industrial setups
by successfully attacking the robotic arm with an adversarial
patch, misleading the system’s actions, either towards human
hands or mislocating the card. This adversarial patch was
optimized using YOLO v3, crafted through an iterative process
using a set number of training images.

A. Threat model

We assume that within the targeted system, the client and
server are separate parts from the well-protected physical
system, which is easy for attackers to access. According to
this information, we assume that the attacker can access the
client and server parts with the following constraints:

1The case study was conducted when the first author was affiliated with
TUV SUD Asia Pacific and the Singapore University of Technology and
Design.

Fig. 2. Digital attack examples: untargeted attacks push the card center
away from card; targeted attack move center prediction away from card AND
towards human hand

Fig. 3. Physical attack examples (camera view of the robotic arm): untargeted
attacks push the card center away from card; targeted attack move center
prediction away from card AND towards human hand

• The attacker can access the information of the deep
learning model (e.g. object detector) in the client.

• The attacker has access to the object and can modify it.
• The attacker cannot modify any program inside the sys-

tem based on the integrity check mechanism [32].
The assumption of the threat model is made referring to the

work [31] that has the same physical setup and scenario as
ours.

B. Adversarial attack design

We build the system on the same robot model (UR10e) with
the same setup and we train the AI model with RAST-AT
method to improve the model’s robustness as a defense.

We applied the attacks with digital images, and the attack
performed with a 100% success rate when untargeted but with
a 23.33% success rate when targeted. This is similar to the
paper [31]. Figure 2 shows the effect of attacks based on digital
images with untargeted and targeted adversarial patches.

Given the differences between digital and physical environ-
ments, we incorporate the robotic working mechanisms and
context variety into the training process and improve the attack
with an optimization process as suggested in the work [31].

To address context variety, we collect images of cards held
in different hands and environments and generate random
noises optimized for one image, then use the updated patch
as the initial patch for subsequent rounds of training. Training
stops when the loss is below a specific threshold or after a
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certain number of iterations. The patch is pasted randomly
with a higher probability in the central 1/3 of the image
to imitate actual scenarios. To address physical environment
differences, we scan printed patches and compare them with
digital patches to calculate bias δ, which is considered before
printing. The patch is also randomly scaled within 20% of the
original size to simulate physical environments.

The effects of physical attacks are shown in Figure 3. The
robotic arm clips the card correctly without the adversarial
patch (top left). A targeted adversarial patch was trained to
lead the robotic arm to hit the human’s hand. The object
detector then included the hand as its target and the robotic arm
hit the human’s hand (top middle and top right). The bottom
three images show the problematic predictions of the object
detector when seeing the adversarial patch, e.g., the object
detector cannot see anything and returns to the default position
without closing the gripper (bottom left). Additionally, with
the untargeted adversarial patch, the object detector gives
wrong or multiple predictions of the card coordinates. In
summary, the object detector cannot detect the card or detect
the wrong items when an adversarial patch is applied.

Our single test involves three steps: (1) presenting a card,
(2) moving the camera to follow the card, and (3) completing
the task and returning to the default position. A successful
untargeted attack occurs when the gripper fails to close and
clip the card, while a successful targeted attack occurs when
the robotic arm hits the human’s hand.

We conducted 40 attacks, divided into 20 untargeted and
20 targeted. Untargeted attacks had a success rate of 95% and
targeted attacks had a success rate of 65%. Targeted attacks
did not always make the gripper hit a human’s hand but mostly
clipped other locations. We shall later evaluate our method as
a defense based against this attacking scenario and present the
details in Section V-E.

V. EVALUATION

We evaluate our method with respect to the following
research questions (RQs), which require us to validate it
against different datasets/models, compare it against other data
selection methods, and finally, assess its feasibility in a real
system.

• RQ1 (Validity). Can our method save time and maintain
the performance of the model on different datasets?

• RQ2 (Robustness). Does our method perform better
(accuracy and robustness) at selecting boundary data
compared to other boundary data selection methods?

• RQ3 (Efficiency). Is our method faster while maintaining
robustness compared to other adversarial training meth-
ods?

• RQ4 (Transferability). Can the selected data be used to
train a different DNN model?

• RQ5 (System Application). Is our method effective in an
actual system for defending against physical adversarial
attacks?

We run experiments on hardware with a GPU (NVIDIA
GeForce GTX 1050) and the Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz processor, using the Windows 10 operating

Fig. 4. Data selection results on CIFAR-10 and MNIST. y-axis: number of
selected data, time of training, and testing accuracy vs x-axis: different values
of λ (NB: λ = 0 indicates that all data is used for training)

system. The software frameworks are Python (version 3.6.13),
NumPy (version 1.19.1), TensorFlow-GPU (version 2.1.0), and
Keras (version 2.3.1).

A. RQ1: Validation

To assess the impact of data selection on model perfor-
mance before and after RAST, we have chosen to apply our
methodology to two widely used datasets, CIFAR-10 and
MNIST. Specifically, we have trained two convolutional neural
networks (CNNs), denoted as model A and model B, whose
structures are outlined in Table I

(model C is to be discussed in a later experiment). CIFAR-
10 is a dataset of 60,000 32x32 color images in 10 classes,
with 6,000 images per class. The MNIST dataset is a collection
of 70,000 images of handwritten digits (0-9), each of size
28x28 pixels. We choose a CNN model with a training epoch
of 50 to demonstrate the performance of the trained model
with and without data selection.

We train the initial model using 20% randomly selected
data from two datasets. The model is updated separately with
all data points and selected data points based on a controlled
attack level ϵ. Sensitivity of each data point is defined as the
minimum ϵ value that can generate adversarial examples. We
use λ to select data points with sensitivity less than the given
value. CIFAR-10 and MNIST provide 50k and 60k unlabeled
training data, respectively, and 10k labeled testing data for
each.

We then record the number of selected data points, time and
performance of the updated model with different step sizes ϵ.
Note that, ϵ = 0 represents there is no selection and all data are
considered training data. Therefore, λ = 0 is the benchmark.
Figure 4 shows the results.

Increasing λ leads to the selection of more data and in-
creases training time, as shown in the figure. We compare the
number of selected data, training time, and testing accuracy
with the benchmark in Table II. The optimized combination
is highlighted in bold. While training accuracy remains sim-
ilar, testing accuracy improves. As λ increases, selected data
stabilizes, and testing accuracy approaches the benchmark,
achieving 0.04 (λ = 0.005). Data size reduces by 67.49%, and
training time reduces by 68.67% compared to the benchmark.
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TABLE I
STRUCTURE OF DNN MODELS USED IN OUR EXPERIMENTS

MNIST(Model A) CIFAR-10(Model B) CIFAR-10*
(model C)

Conv (32,3,3)+ relu Conv (32,3,3)+ relu Conv (64,3,3)+ relu
Conv (32,3,3)+ relu Max pooling (2,2) Conv (64,3,3)+ relu
Max pooling (2,2) Conv (64,3,3)+relu Max pooling (2,2)

Conv (64,3,3)+ relu Max pooling (2,2) Conv (128,3,3)+ relu
Conv (64,3,3)+ relu Flatten Conv (128,3,3)+ relu
Max pooling (2,2) Dense (64)+relu Max pooling (2,2)

Flatten Dense (10)+softmax Flatten
Dense (200)+relu Dense (256)+relu

Dense (10)+softmax Dense (256)+relu
Dense (10)+softmax

TABLE II
RESULTS OF DIFFERENT λ VALUES COMPARING WITH BENCHMARK

CIFAR-10 MNIST

λ
% data size
reduced by

% time
reduced by

% testing
accuracy
sacrificed

% data size
reduced by

% time
reduced by

% testing
accuracy
sacrificed

0.001 94.25% 94.49% 15.00% 99.97% 100.00% 68.00%
0.002 89.06% 88.97% 9.00% 99.92% 99.57% 57.00%
0.003 82.69% 82.71% 7.00% 99.88% 99.57% 46.00%
0.004 74.85% 76.69% 5.00% 99.84% 99.57% 46.00%
0.005 67.49% 68.67% 4.00% 99.79% 99.57% 48.00%
0.01 48.29% 55.14% 3.00% 99.52% 99.57% 25.00%
0.05 44.32% 42.11% 3.00% 95.91% 95.30% 1.00%
0.1 43.40% 43.86% 2.00% 85.88% 84.62% 0.00%
0.2 39.54% 41.35% 2.00% 62.77% 62.82% 0.00%

When λ is small, a slight increase (e.g. 0.001) can greatly
affect the selected data, while a larger λ (i.e. λ ≥ 0.01) needs a
greater increase (e.g. 0.1) to affect data selection. This suggests
that boundary data is sensitive to adversarial attacks, and data
with smaller sensitivity values are crucial for model training
as they are closer to the boundary.

B. RQ2: Robustness

To demonstrate RAST is robustness-oriented compared to
other boundary data selection methods, we compared it with
other boundary data selection methods. There are very few
works that select boundary data for DNN: one is the Boundary
Sample Selection (BSS) [19] which shares some similarities
with our method and targets a similar goal of boundary data
selection, albeit it was originally designed for mutation testing.
BSS only selects data from the output layer of DNNs, focuses
on the top two classes, and uses a threshold value of Tv

to identify boundary data based on the ratio of the highest
output probability to the second-highest probability. Another
boundary data selection method is Adversarial Active Learning
(SALT) [20], which adds noise to the data and selects the data
point that gives maximum uncertainty.

In the BSS approach, given a DNN model f for n clas-
sification, and unlabeled data D, for every data point d in
D, 1) run model f on d to get the predicted probability
y1, y2, ..., yn; 2) calculate the ratio of max and second max
predictions r = ymax/ysecmax; 3) if the ratio is lower than a
threshold τ , add the data point to selected dataset Ds.

The core idea of SALT is to calculate the uncertainty after
adding a small perturbation to the data. Different from RAST
which adds a specific perturbation, SALT adds a uniform
perturbation which is 0.01 to all the data. Moreover, RAST
checks if the data has been attacked empirically while SALT
calculates uncertainty.

We test the models on CIFAR-10 dataset, with 20% (10k)
of 50k training data and ϵ = 4/255 and α = 2/255 with 8

Fig. 5. Results of accuracy with BSS, SALT and RAST method. y-axis:
testing accuracy vs x-axis: number of selected data

BSS

RAST

SALT

91 55

1136

1304

621

301201

RAST: 2071

SALT: 2113

BSS: 2049

SALT & BSS: 1757

RAST & SALT: 676

RAST & BSS: 712

Fig. 6. Number of data selected by RAST, BSS and SALT, and their overlap
demonstration

iterations for FGSM and PGD attacks. RQ2 is answered by
comparing BSS, SALT and RAST-AT methods on CIFAR-
10, where RAST-AT outperforms BSS and SALT with higher
accuracy, especially training with fewer data points. All meth-
ods are approaching the benchmark as data size increases.
Figures 5 show the accuracy vs. data size.

Furthermore, we perform a comparison involving ap-
proximately the top 2000 data points that were cho-
sen using the RAST method (λ = 0.01), the BSS
method (probability ratio = 7), and the SALT method
(uncertainty = 0.44). The specifics are illustrated in Fig-
ure 6. It’s evident that there’s a significant overlap between
the BSS and SALT selections, while RAST selects a different
amount of data. According to the testing results of Figure 5 and
Table III, RAST selects the most valuable data for adversarial
training towards accuracy and robustness.

C. RQ3: Efficiency

To check if RAST is effective in adversarial training, we de-
signed experiments to compare with other efficient adversarial
training methods [25].

We select data by applying FGSM, therefore, we evaluate
the robustness by applying FGSM attack (ϵ = 4/255). More-
over, we apply PGD attack (α = 2/255 with iteration = 8),
which is one of the strongest first-order attacks. We compare
PGD-AT, FAST-AT and RAST-AT adversarial training meth-
ods of time consumption and evaluate the robustness of FGSM
and PGD attacks.

The original model is trained with 50k data points and
50 epochs and has an accuracy of 0.82 on 10k testing data.
We test the model’s robustness by applying FGSM and PGD
adversarial attacks to the testing dataset and select adversarial
examples to test the updated model after adversarial training.
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TABLE III
PERFORMANCE OF DIFFERENT ADVERSARIAL MODELS BEFORE AND AFTER PGD/FGSM ATTACKS

Datasize Training time (s) Test Acc FGSM robustness PGD robustness
PGD-AT 100000 149.00 0.83 0.59 0.56
FAST-AT 100000 86.48 0.79 0.72 0.74
RAST-AT (λ = 10/255) 81923 68.52 0.79 0.72 0.75

Fig. 7. Results of using selected data to train a new model. y-axis: left-
training time (s); right-testing accuracy vs x-axis: different values of λ (NB:
λ = 0 indicates that all data is used for training)

We evaluate the updated model’s robustness by checking the
accuracy of adversarial examples, which is summarised in
Table III.

The RAST-AT method is the fastest with ϵ = 2/255
according to the table, but with lower robustness when ϵ
is small. As ϵ increases, robustness also increases and can
approach FAST-AT performance at ϵ = 8/255, while still
being 25% faster. For a balance between speed and robustness,
RAST-AT with ϵ = 4/255 sacrifices 3% robustness in FGSM
attacks and 4% in PGD attacks, while being 30% faster. This
is because RAST-AT can select sensitive and important data
points, allowing the model to be trained with fewer data points
while maintaining accuracy and robustness.

D. RQ4: Transferability

To minimize the effort in real-world applications, we show
the transferability of RAST that the selected boundary data
works for a different model structure with the same target

Figure 7 shows the training time and testing accuracy. With
more data selected, the accuracy increases and after λ = 0.01,
the accuracy tends to be stable and increases slowly. Using
the selected data from model B (described previously), we
trained a new model C (structure in Figure I under column
CIFAR-10*), showing that the same boundary data works for
a different model with the same target. Figure 7 depicts the
training time and testing accuracy, where more data selected
leads to higher accuracy, and after λ = 0.01, the accuracy
remains stable and increases slowly.

Our method is particularly beneficial in practical situations
where there are limitations on data size or training time,
as these constraints are typical in real-world applications.
Applying our method improves the efficacy of the selected
data, making it more useful in training a robust model despite
limited resources.

Fig. 8. A comparison before and after application of RAST-AT. 1st row: the
moment when gripper clips before application of RAST-AT. 2nd row: camera
view after application RAST-AT

E. RQ5: System Application

To test if RAST-AT is applicable to an actual system to
defend against physical attacks2, we apply RAST-AT to the
real-world cobot described in Section IV.

Using our method, we train the model again by employing
592 images for object detection training, which is the same as
the training data size used in a previous study [31]. A study
by Xu et al. [9] has shown that adversarial examples can be
used to target object detection algorithms like YOLO. Hence,
we utilize RAST-AT to select adversarial examples from the
chosen dataset to retrain the model and demonstrate that the
model trained with RAST-AT data is more resilient than the
original model.

To enhance the model’s resilience, we utilize our approach
by training it with more sensitive data and their boundary
examples. Our data selection algorithm (Algorithm 1) aids
us in choosing suitable images. After applying RAST-AT for
data selection, we have 322 data points for training, with
an epsilon value of ϵ = 8/255. This value is preferred due
to its high accuracy and robustness in comparison to other
values discussed in Section V-C. We substitute the current
model in the system with the updated model and perform
our evaluations again. Figure 8 shows the results before and
after we apply our method. We repeat defense experiments on
targeted and untargeted attacks 20 times each and compare
them with attack experiments. We summarise the results in
Table IV.

Based on the table data, it can be inferred that RAST-AT
shows superior performance when confronted with untargeted
attacks compared to targeted attacks. Despite the fact that

2The experiment was done when the first author was working at TUV SUD
AP
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TABLE IV
RESULTS OF TESTS BEFORE AND AFTER APPLICATION OF RAST-AT

num(rate) Total
num

Attack
success

Attack
success

(after RAST-AT)
Improved

Targeted
attacks 20 13 9 20%

Untargeted
attacks 20 19 7 60%

targeted attacks are generally more resilient, our approach still
proves to be effective in enhancing the model’s resilience.

VI. CONCLUSION AND FUTURE WORK

We proposed a new method for selecting boundary data
for deep learning models and evaluated it on CIFAR-10 and
MNIST. The method speeds up training by 68.67% on CIFAR-
10, 95.3% on MNIST, achieving a 10% increase in accuracy
and 7% and 6% higher robustness against FGSM and PGD
attacks, respectively. The method was also found to be faster
than other adversarial training methods while providing similar
or better performance. It was validated on a robotic arm
system, showing a 20% improvement in robustness against
targeted attacks and 60% against untargeted attacks, making
it an effective defense against physical adversarial attacks.

In theory, methods such as iFGSM and PGD can replace
FGSM for boundary data selection. Adversarial training re-
shapes this boundary, allowing iterative data selection until
stability is reached. Yet, for real-world application, there’s
a need to harmonize efficiency, accuracy, and robustness.
Methods like iFGSM and PGD are more time-consuming than
FGSM, and continuous boundary data selection adds to this.
Determining the optimal trade-off between these attributes
demands more research. Future studies will test varied attack
methods on different robots to find the right equilibrium for
AI-driven industrial systems.
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