Simulated Interactive Debugging

Yannic Noller*, Erick Chandra®, Srinidhi Chandrashekar?, Kenny Choof, Cyrille JegourelT,
Oka Kurniawan®, Christopher M. Poskitt!
*Ruhr University Bochum, Germany TSingapore University of Technology and Design, Singapore
J:Singapore Management University, Singapore
*yannic.noller@acm.org, T{name_surname}@sutd.edu.sg, iCposkitt@smu.edu.sg

Abstract—Debugging software, i.e., the localization of faults
and their repair, is a key activity in software engineering.
Therefore, effective and efficient debugging is one of the core
skills a software engineer must develop. However, the teaching
of debugging techniques is usually very limited or only taught
in indirect ways, e.g., during software projects. As a result, most
Computer Science (CS) students learn debugging only in an ad-
hoc and unstructured way. In this work, we present our approach
called Simulated Interactive Debugging that interactively guides
students along the debugging process. The guidance aims to
empower the students to repair their solutions and have a proper
learning experience. We envision that such guided debugging
techniques can be integrated into programming courses early
in the CS education curriculum. We developed a prototypical
implementation using traditional fault localization techniques
and large language models. Students can use features like the
automated setting of breakpoints or an interactive chatbot. We
designed and executed a small-scale, controlled experiment with
eight undergraduate CS students. Based on the responses, we
conclude that the participants liked the systematic guidance. They
rated the automated setting of breakpoints as most effective,
followed by the interactive debugging and chatting, and the
breakpoint explanations. In future, we will extend our concept
and implementation, and perform more intensive user studies.

Index Terms—Intelligent Tutoring, Debugging, Software Engi-
neering, Education

I. INTRODUCTION

Despite the paradigm shift towards Artificial Intelligence
(Al)-assisted software development, particularly with the
emergence of Large Language Models (LLMs), there remains
a high demand for qualified software engineers capable of
developing reliable, high-quality software. With more auto-
generated code, it will become even more critical that ju-
nior software developers can effectively debug software and
solve bugs, even in code they have not written themselves.
Radermacher et al. [1] explored knowledge deficiencies of
graduate students from an industry perspective. One of the
most frequently mentioned issues with software tools has been
version control systems and debuggers. While we have seen
the integration of version control systems like Git in the Com-
puter Science (CS) and Software Engineering (SE) curriculum,
e.g., with the usage of GitHub Classroom, we have not seen
much innovation regarding debugging education. Michaeli
and Romeike [2] noted that there are only a few studies
investigating the “explicit teaching of debugging” and students
are often left alone to learn debugging “the hard way”. Our
experience confirms this observation: most students still learn
(interactive) debugging of code in an ad-hoc and unstructured

way by trial and error. Using “print/log” statements is often
the only extent of students’ experience in debugging. They do
not receive proper guidance in efficient program comprehen-
sion and how to debug programs effectively. Current CS/SE
research efforts focus on general programming education,
which helps to provide scalable alternatives to mentor and
guide a rising number of students. Automated Program Repair
(APR) techniques [3], [4], [S] can help to produce patches for
incorrect submissions, which then can be used as a basis for
personalized feedback, or even automated grading [6]. In fact,
we already have seen the application of such techniques in the
CS/SE curriculum focusing on repairing students’ solutions
and providing feedback [7], [8]. However, the existing related
work in CS education does not address actual debugging.
Therefore, our research objective is to understand students’
needs in learning to debug and provide automated means to
guide them effectively along the debugging process.

As a first step to achieve our research objective, we pro-
pose Simulated Interactive Debugging. The essence of this
concept is to create a simulation of an interactive debugging
experience; “simulated” because the solution is known in the
education context due to given reference implementations and
auto-generated artifacts like fault locations and patches. Our
goal is to provide a controlled but supportive environment, in
which the students debug the problem on their own. Similar
to a human tutor, we would not directly reveal the solution
and instead help the student to understand and fix the issue.
Our vision of such an assisted debugger requires integration
into coding tools like Integrated Development Environments
(IDEs) to actively guide students. Based on APR, fault lo-
calization, and LLMs, we can show potential problematic
locations, explain the issues at these locations, set breakpoints,
identify relevant variable values, and provide repair hints.

As part of a design science methodology [9], [10], we
developed a prototype as a VS Code IDE extension and
conducted a pilot user study with eight undergraduate CS stu-
dents. The results indicate that students have little experience
with (interactive) debugging but enjoy the guidance, notably
the automatic breakpoint setting and the interaction with the
chatbot. In summary, our core contributions are:

o the concept of Simulated Interactive Debugging to guide

CS students along the interactive debugging process

« the implementation of this concept as an IDE plugin

e a pilot user study to show the practicality and usability

of our concept and its implementation

II. RELATED WORK

a) Intelligent Tutoring Systems: Due to the rise in the
number of CS students [11], educators need help to cope with
the number of assignment submissions. APR techniques are
currently being explored to supplement the missing human
tutor, e.g., by realizing so-called Intelligent Tutoring Sys-
tems (ITS). Early works in this domain attempt to repair
student submissions to generate feedback [3], [4] and au-
tomatically grade programming assignments [6], [12]. More
recently, LLM-based approaches have been explored to gen-
erate personalized feedback and hints for programming as-
signments [5], [13], [14], [15], [16]. Several experiences have
been reported where LLM-based programming assistants have
been deployed in the classroom context [7], [8], [17], [18].
LLMs also can be combined with traditional techniques like
static analysis to provide incremental hints for programming
tasks [19]. Moreover, existing works [20], [21] benchmarked
various models regarding their capabilities to support program-
ming education. Overall, the existing works focus on repairing
programming assignments and generating feedback; they do
not address the teaching of interactive debugging.

b) Debugging Education: To get an overview of the
teaching of debugging, we refer to McCauley et al. [22],
who conducted a systematic literature review. Michaeli and
Romeike [2] recently explored the influence of teaching
systematic debugging concepts with an intervention study
concluding that explicitly teaching debugging skills posi-
tively affects debugging self-efficacy. Recent LLM-inspired,
debugging-related research focuses on Socratic question-
ing [23] and generating so-called debugging quizzes [21], [24]
that ask students to reason about a given buggy program and
design bug-revealing test cases. While the reported approaches
and tools can help students build general debugging skills, to
the best of our knowledge, no approach guides through the
interactive debugging process.

c) Al in CS Education: Most recently, with the emer-
gence of LLMs, Al has arrived in the domain of CS education.
Shein [25] argues that while we still need to teach students
the fundamentals of programming, such teaching will become
more “alive” through Al, e.g., via chatbots. Denny et al. [26]
investigated desirable characteristics for Al teaching assistants
and concluded that students enjoy Al-based learning support
and actually preferred tailored scaffolding instead of mere re-
sponses and the revealing of solutions. Kazemitabaar et al. [27]
explored the design space for such Al tools and highlighted
the importance of step-by-step guidance and an interactive
dialog with the Al Following the insights of these works, our
proposed concept for Simulated Interactive Debugging guides
the student in understanding the problem and identifying the
programming faults instead of just providing feedback on how
to fix it. Further, we also offer an Al-based chatbot with which
the students can engage in a controlled environment.

III. CONCEPT: SIMULATED INTERACTIVE DEBUGGING

To tackle the shortcomings of CS education in program
debugging, we propose the following concept. Using tech-

nology from automated SE, in particular from APR, we can
identify the issue in a student’s buggy program and can
generate a corresponding solution. Note that such a solution
can structurally and syntactically differ from the reference
implementation provided by a lecturer. Now, knowing the
fault and where to fix it, we can use this knowledge to
guide the student not only in fixing the issue, but step-by-
step in understanding the defect, identifying the potential fix
locations, and eventually fixing the problem—similar to how a
human tutor would guide the student along the debugging pro-
cess. We designed and developed an Al-assisted debugger that
offers students a simulated interactive debugging experience.
Students receive help in running tests, using the interactive
debugger in identifying the underlying fault in the problem,
and in fixing the actual problem. As Birillo et al. [28] have
argued, combining programming education with the use of
IDEs helps familiarize students with industrial technologies;
hence we envision our concept being deployed within IDEs.

a) The Role of LLMs: This concept fits into a larger
research endeavor of ours, where we aim to develop an
active learning environment integrating APR through LLMs
and other SE tools with interactive debugging. This con-
cept is designed to provide interactive guidance to students,
thereby enhancing their learning experience in programming.
Furthermore, our concept exposes students to Al tools, in
particular LLMs, in a guided and controlled way. LLMs can
be deployed in various roles in this concept, e.g., to generate
hints and explanations in natural language, as well as core
technology for an interactive chatbot. Based on the generated
artifacts from techniques like spectrum-based fault localiza-
tion (SBFL) [29], static code analysis, symbolic execution,
code synthesis and LLM prompting, we can set breakpoints
automatically, identify relevant variable values, and highlight
them for the students. Such a process can also be supported
by Socratic questioning [23].

b) Workflow: The concept has two types of users: the
students and the lecturers, although the main focus is on the
students. Both user groups provide inputs and receive feed-
back. The lecturer provides the programming assignment, the
reference implementation, and a test suite consisting of private
and public test cases. The student provides a buggy solution
and (optionally) a set of custom test cases. There are three
different use cases: (1) the primary use case is the assisted
debugging, (2) the test assessment for lecturers, and (3) the
test assessment for custom tests from the student. The test
assessment for lecturers checks whether the given test suite
is strong enough to catch errors and perform effective fault
localization, e.g., via mutation testing. The test assessment for
custom tests from the student works with the idea that when the
student submits custom tests, these can be executed against the
reference implementation from the lecturer. Failing test cases
can be flagged and corrected; further, we can propose new
tests, e.g., to explore boundary cases or to increase coverage.

c) Assisted Debugging: Figure 1 shows the envisioned
interaction between student and Al assistant. First, the Al
assistant can (1) explain failing tests and the observed failures.

You just ran your code for the factorial function and it
failed test case 2. Do you want me to explain the issue?
Z Yes!]
For n=2, the loop will run only once because range(1,2)
generates only 1. What might be happening to the .
calculation of the factorial in this case? Assistant

| don’t know... where is the error in my code? J

[l

Student |

Okay, no problem. Use the Set Breakpoints feature to
identify the relevant lines to identify the error. Click on

the lines for an explanation.
| am still stuck. Can you give me a hint? J

Absolutely! For the input n=2, the loop runs only once
because range (1,2) generates only 1. Think about
what the initial value of fact is and how it gets updated
in each iteration of the loop.

| see the issue now. Are there any variables | should
focus on?

Yes, focus on the variables fact and i within the loop.
Consider how fact is initialized and updated in each

iteration of the loop. Take a moment to review and
adjust how fact is being updated within the loop.

Fig. 1. Envisioned conversation between student and the Al assistant.

Next, it can (2) automatically set breakpoints at locations
of interest. These locations can be identified, e.g., by using
SBFL. Setting such breakpoints enables the unexperienced
student to use the interactive debugger to step through the
test execution. Based on LLMs, we also can (3) generate
hints in natural language explaining these breakpoints. In
cases where a student’s understanding of the problem is
far from what is expected, the Al assistant can (4) deliver
incremental guidance, e.g., via progressive hints. If the student
is still stuck, the Al assistant can (5) partially reveal why a
certain test fails. Furthermore, we can (6) help the student by
highlighting interesting variables that the student can observe
during debugging. This interaction aims to guide the student to
repair their solution and to have a proper learning experience.

IV. PiLoT USER STUDY
A. User Study Setup

a) Prototype: We realize our study prototype as a VS
Code IDE extension. Our concept is language-agnostic; how-
ever, due to the programming courses at our institution, we
decided to first focus on supporting Python. It provides two
core features for the assisted debugger: the automatic setting
of breakpoints (based on SBFL with FauxPy [30]) and a chat
interface providing tailored debugging hints. The chat interface
connects the participant with an LLM-powered chatbot using
OpenAl gpt-3.5-turbo. Note that in the implementation of our
current prototype, we focused only on the debugging use case.

b) Experiment Structure: The study started with a short
briefing, the IRB signing, and the completion of a profiling
survey. Then, we provided a 15-minute introduction into de-
bugging and for demonstrating the tool’s features. Afterwards,
the participants had 40 minutes to solve two coding tasks. The
tasks originate from LeetCode and are of medium difficulty
that should not overwhelm or underwhelm the students. Both
were provided with pre-existing buggy solutions, along with
corresponding passing and failing tests. In the first task, named
maxOperations [31], the participants have to fix an algorithm

Are the provided features effective?

Automatic Breakpoint Setting 2 3
Interactive Debugging and Chatting Features 2 3 1
Explanation of Automatic Breakpoint Setting 4 4
Test Error Explanation 1 5 1
Progressive Hints 1 3 3

Strongly Agree Agree Neutral Disagree m Strongly Disagree

Fig. 2. Participants’ assessment of the provided features.

that is supposed to calculate the maximum number of times
to pick two numbers from a given array whose sum equals
the parameter k. In the second task, named longestOnes [32],
the participants have to fix the algorithm that is supposed to
compute the maximum number of consecutive 1’s in a binary
array if one can flip at most k£ 0’s. The participants first had
to understand the task’s description, find the errors in the
provided solution, and finally modify the program to pass all
tests. We provided a handout with a possible workflow to solve
the tasks with the available assisted debugging features (see
artifact). We informed the participants that the generated hints
might not be entirely accurate. In the end, the participants
were asked to complete a usability questionnaire [33] and a
post-task survey. The study was timed for 70 minutes, and the
participants were compensated with 30 SGD.

¢) Participants: For our pilot study, we recruited eight
first-year undergraduate CS students. Based on our profiling
survey results, all of them are beginners in the field of
programming, and hence, are in our target group: most of them
have programming experience of less than two years and can
only write basic Python programs. 6/8 participants mentioned
that they can debug basic errors but struggle with complex
ones. At the same time, 6/8 have never heard of or never used
an interactive debugger. Those who understand the concept of
interactive debuggers still prefer using print/log statements.

B. Results & Discussion

a) Existing Features: In total, all eight participants were
able to solve the two programming tasks in the provided
time. As shown in Figure 2, the most effective feature is
the automatic breakpoint setting (5/8 agreement), followed by
interactive debugging and chatting (4/8) and the explanation of
automatic breakpoints (4/8). The features for progressive hints
and test error explanation are only positively evaluated by 2/8
students. The progressive hints helped the students to identify
where their code has a fault but did not reveal the solution.
Instead, it tries to guide the students to find the solution on
their own to foster a learning effect. However, the participants
perceived this feature as often too vague or too general. For
most participants, the fest error explanation helped to analyze
the coding issue, while the feature itself could be made more
interactively, e.g., allowing for different/alternative explana-
tions. The explanation of the automatically set breakpoints
helped most students to understand their faults. Therefore, we

conclude that it is a good addition to the automatic setting of
breakpoints. The interactive debugging and chatting was able
to add more detailed information to the debugging efforts. One
participant mentioned that this even accelerated the overall
debugging process. Others still found that the responses were
vague and that more prompts could improve the feature. The
automatic setting breakpoints feature was considered very
effective as it set the breakpoints at the right places. One
participant summarized its effectiveness as follows:

“It did get the breakpoint in the right place, which was a good
start in debugging.”

One of the first hurdles of conventional interactive debug-
ging is to set breakpoints. Our concept of simulated interactive
debugging helps the students to get started, and therefore,
guides them along a deeper understanding of their coding
errors and strives to develop debugging skills. The following
quote from one of our participants about the interactive
debugging and chatting highlights another aspect:

“It helped me brainstorm while guiding me and
not letting me fully rely on A”

Our goal is to guide students to learn debugging but also
the usage of Al-based tools like ChatGPT. By constructing
an LLM-based chatbot, we can control the prompts and
the content of responses, and hence, still foster a learning
experience for the students, e.g., by filtering direct solutions.

b) Usability: Using the standardized system usability
survey by Brooke [33], we can conclude that overall, the
participants are satisfied with the prototype’s usability. The
average System Usability Scale (SUS) is around 65 (out of
100), providing a good basis for our future work. For example,
7/8 participants would like to use the system frequently, and
5/8 agreed that the system is easy to use.

c) Debugging Process: After completing the tasks, we
also asked the participants how confident they are about
setting breakpoints on their own. The responses indicated
mixed confidence with a tendency to lower confidence: 1/8
participants strongly agreed to be confident, 2/8 agreed, 2/8
noted a neutral opinion, and 3/8 disagreed. Afterwards, we
asked them to set breakpoints for a given buggy code snippet
that calculates the average for a given list of grades without
catering for None values in the list. 6/8 participants would
set breakpoints at the correct lines, which shows that actually
most of the participants have a correct intuition about where
to set the breakpoint for further inspection. While we see
good results for this relatively simple example, we conclude
that due to overall low confidence, the automated setting of
breakpoints would still be an interesting feature. However,
such a feature could be applied only as hints or as confirmation
for the students’ manually set breakpoints. Additionally, we
asked the participants about their perceived key difference to
their usual debugging process. The majority (6/8) mentioned
that our Simulated Interactive Debugging tool helped them
to debug the coding issue and guided them systematically.

However, one of the participants mentioned that the interactive
debugging process could be more time-consuming, though.
The following two quotes are representative responses:

“Normally I would just trial and error until I got it right, but)
this tool allowed me to systematically identify the problems in
the code step by step.”

“My usual debugging process includes using print statements
and doing everything myself but sometimes I just get tired and
ask ChatGPT. Simulated Interactive Debugging helped me think

while guiding me through the right process.”

\ J

d) Additional Features: At the end of the post-task
survey, we asked the participants about any additional features
they would like to see in the Simulated Interactive Debugger.
6/8 participants indicated that further hints about what and
how to change would be helpful. For example, when a student
really struggles, the chatbot could provide more detailed
explanations and propose changes that the student could select.
One participant mentioned that the Ul could be improved to
allow easier switching between the assisted debugger and the
interactive debugging tool in the IDE. Lastly, one participant
highlighted that automated test generation would be helpful,
e.g., if students cannot find an appropriate input for debugging.

C. Threats to Validity

We performed a first, small pilot study with eight CS
students, i.e., our results may not generalize. We focused on a
small number of students to receive focused feedback for the
next development phase. The results of our profiling survey
showed that the participants are in our target, i.e., beginners in
programming with no or very limited (interactive) debugging
experience. For the next cycle of user studies, we will try to
reach a larger set of participants. To mitigate the threat of
manual errors in our analysis, we ensured that all results were
analyzed and agreed upon by two authors independently.

V. CONCLUSION AND FUTURE WORK

We proposed the concept of Simulated Interactive Debug-
ging as a first step to automate the teaching of debugging
skills. Incorporating such techniques in the CS curriculum
will be essential to teach debugging beyond ad-hoc approaches
and guide students in using Al-based programming tools. In
future, we plan to incorporate more active guidance, e.g., by
using a state machine-driven approach, similar to Bouzenia et
al. [34]. We will also integrate state-of-the-art APR techniques
and implement the test assessment and generation features.

DATA AVAILABILITY
Our artifact with the prototype and the study artifacts is
available: https://doi.org/10.6084/m9.figshare.28202336
ACKNOWLEDGMENT

Part of this work was supported by the Ministry of Educa-
tion, Singapore, under the Tertiary Research Fund (MOE-TRF)
Grant No. MOE2023-TRF-034. We gratefully acknowledge
this support, which made this research possible.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

REFERENCES

A. Radermacher, G. Walia, and D. Knudson, “Investigating the
skill gap between graduating students and industry expectations,”
in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 291-300.
[Online]. Available: https://doi.org/10.1145/2591062.2591159

T. Michaeli and R. Romeike, “Improving debugging skills in the
classroom: The effects of teaching a systematic debugging process,”
in Proceedings of the 14th Workshop in Primary and Secondary
Computing Education, ser. WiPSCE ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3361721.3361724

S. Gulwani, I. Radi¢ek, and F. Zuleger, “Automated clustering
and program repair for introductory programming assignments,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 465-480.
[Online]. Available: https://doi.org/10.1145/3192366.3192387

Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury, “Re-
factoring based program repair applied to programming assignments,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2019, pp. 388-398.

J. Zhang, J. P. Cambronero, S. Gulwani, V. Le, R. Piskac,
G. Soares, and G. Verbruggen, “PyDex: Repairing bugs in introductory
python assignments using LLMs,” Proc. ACM Program. Lang.,
vol. 8, no. OOPSLAI, Apr. 2024. [Online]. Available: https:
//doi.org/10.1145/3649850

Z. Fan, S. H. Tan, and A. Roychoudhury, “Concept-based automated
grading of CS-1 programming assignments,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 199-210. [Online]. Available:
https://doi.org/10.1145/3597926.3598049

M. Kazemitabaar, R. Ye, X. Wang, A. Z. Henley, P. Denny, M. Craig,
and T. Grossman, “CodeAid: Evaluating a classroom deployment
of an LLM-based programming assistant that balances student and
educator needs,” in Proceedings of the 2024 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3613904.3642773

Z. Fan, Y. Noller, A. Dandekar, and A. Roychoudhury, “Software
engineering educational experience in building an intelligent tutoring
system,” in CSEE&T. 1EEE, 2025, pp. 75-86.

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, vol. 28, no. 1, pp.
75-105, 2004. [Online]. Available: http://www.jstor.org/stable/25148625
R. J. Wieringa, Design Science Methodology for Information
Systems and Software Engineering. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014. [Online]. Available: https://doi.org/10.1007/
978-3-662-43839-8_1

K. Masters, “A brief guide to understanding MOOCs,” The Internet
Journal of Medical Education, vol. 1, no. 2, p. 2, 2011.

A. Birillo, I. Vlasov, A. Burylov, V. Selishchev, A. Goncharov,
E. Tikhomirova, N. Vyahhi, and T. Bryksin, “Hyperstyle: A tool for
assessing the code quality of solutions to programming assignments,”
in Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education - Volume 1, ser. SIGCSE 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 307-313.
[Online]. Available: https://doi.org/10.1145/3478431.3499294

M. Liffiton, B. E. Sheese, J. Savelka, and P. Denny, “CodeHelp:
Using large language models with guardrails for scalable support
in programming classes,” in Proceedings of the 23rd Koli Calling
International Conference on Computing Education Research, ser. Koli
Calling ’23. New York, NY, USA: Association for Computing
Machinery, 2024. [Online]. Available: https://doi.org/10.1145/3631802.
3631830

X. Hou, Z. Wu, X. Wang, and B. J. Ericson, “CodeTailor:
LLM-powered personalized parsons puzzles for engaging support
while learning programming,” in Proceedings of the Eleventh ACM
Conference on Learning @ Scale, ser. L@S °24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 51-62. [Online].
Available: https://doi.org/10.1145/3657604.3662032

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

Q. Zhao, F. Liu, L. Zhang, Y. Liu, Z. Yan, Z. Chen, Y. Zhou, J. Jiang,
and G. Li, “Peer-aided repairer: Empowering large language models to
repair advanced student assignments,” arXiv preprint arXiv:2404.01754,
2024.

S. S Kumar, M. Adam Lones, M. Maarek, and H. Zantout,
“Investigating the proficiency of large language models in formative
feedback generation for student programmers,” in Proceedings of
the st International Workshop on Large Language Models for
Code, ser. LLM4Code ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 88-93. [Online]. Available:
https://doi.org/10.1145/3643795.3648380

M. Abolnejadian, S. Alipour, and K. Taeb, “Leveraging ChatGPT
for adaptive learning through personalized prompt-based instruction:
A CS1 education case study,” in Extended Abstracts of the CHI
Conference on Human Factors in Computing Systems, ser. CHI EA
24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3613905.3637148

O. Kurniawan, C. M. Poskitt, I. Al Hoque, N. T. S. Lee, C. Jégourel, and
N. Sockalingam, “How helpful do novice programmers find the feedback
of an automated repair tool?” in 2023 IEEE International Conference
on Teaching, Assessment and Learning for Engineering (TALE), 2023,
pp. 1-6.

A. Birillo, E. Artser, A. Potriasaeva, 1. Vlasov, K. Dzialets, Y. Golubev,
I. Gerasimov, H. Keuning, and T. Bryksin, “One step at a time:
Combining LLMs and static analysis to generate next-step hints
for programming tasks,” in Proceedings of the 24th Koli Calling
International Conference on Computing Education Research, ser. Koli
Calling ’24. New York, NY, USA: Association for Computing
Machinery, 2024. [Online]. Available: https://doi.org/10.1145/3699538.
3699556

C. Koutcheme, N. Dainese, S. Sarsa, J. Leinonen, A. Hellas, and
P. Denny, “Benchmarking educational program repair,” arXiv preprint
arXiv:2405.05347, 2024.

T. Phung, V.-A. Pidurean, J. Cambronero, S. Gulwani, T. Kohn,
R. Majumdar, A. Singla, and G. Soares, “Generative Al for
programming education: Benchmarking ChatGPT, GPT-4, and human
tutors,” in Proceedings of the 2023 ACM Conference on International
Computing Education Research - Volume 2, ser. ICER °23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 41-42.
[Online]. Available: https://doi.org/10.1145/3568812.3603476

R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon,
L. Thomas, and C. Zander, “Debugging: a review of the literature from
an educational perspective,” Computer Science Education, vol. 18, no. 2,
pp. 67-92, 2008.

E. Al-Hossami, R. Bunescu, J. Smith, and R. Teehan, “Can
language models employ the Socratic method? Experiments with code
debugging,” in Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1, ser. SIGCSE 2024. New York, NY,
USA: Association for Computing Machinery, 2024, p. 53-59. [Online].
Available: https://doi.org/10.1145/3626252.3630799

V.-A. Padurean, P. Denny, and A. Singla, “Bugspotter: Automated
generation of code debugging exercises,” in Proceedings of the
56th ACM Technical Symposium on Computer Science Education
V. 1, ser. SIGCSETS 2025. New York, NY, USA: Association
for Computing Machinery, 2025, p. 896-902. [Online]. Available:
https://doi.org/10.1145/3641554.3701974

E. Shein, “The impact of Al on computer science education,” Commun.
ACM, vol. 67, no. 9, p. 13-15, Aug. 2024. [Online]. Available:
https://doi.org/10.1145/3673428

P. Denny, S. MacNeil, J. Savelka, L. Porter, and A. Luxton-Reilly,
“Desirable characteristics for Al teaching assistants in programming
education,” in Proceedings of the 2024 on Innovation and Technology
in Computer Science Education V. 1, ser. ITICSE 2024. New York,
NY, USA: Association for Computing Machinery, 2024, p. 408—414.
[Online]. Available: https://doi.org/10.1145/3649217.3653574

M. Kazemitabaar, O. Huang, S. Suh, A. Z. Henley, and T. Grossman,
“Exploring the design space of cognitive engagement techniques with
Al-generated code for enhanced learning,” in /UI. ACM, 2025, pp.
695-714.

A. Birillo, M. Tigina, Z. Kurbatova, A. Potriasaeva, 1. Vlasov,
V. Ovchinnikov, and 1. Gerasimov, “Bridging education and
development: Ides as interactive learning platforms,” in Proceedings
of the 1st ACM/IEEE Workshop on Integrated Development
Environments, ser. IDE ’24. New York, NY, USA: Association

[29]

(30]
[31]
[32]
(33]

[34]

for Computing Machinery, 2024, p. 53-58. [Online]. Available:
https://doi.org/10.1145/3643796.3648454

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707-740, 2016.

M. Rezaalipour and C. A. Furia, “FauxPy: A fault localization tool for
Python,” arXiv preprint arXiv:2404.18596, 2024.

“LeetCode: max number of k-sum pairs,” https://leetcode.com/problems/
max-number-of-k-sum-pairs, 2025, accessed: 2025-01-10.

“LeetCode: max consecutive ones III,” https:/leetcode.com/problems/
max-consecutive-ones-iii, 2025, accessed: 2025-01-10.

J. Brooke, “SUS: A quick and dirty usability scale,” Usability Evaluation
in Industry, 1996.

I. Bouzenia, P. T. Devanbu, and M. Pradel, “RepairAgent: An au-
tonomous, LLM-based agent for program repair,” in /ICSE. IEEE, 2025,
pp. 2188-2200.

