A Graph-Based Semantics Workbench for
Concurrent Asynchronous Programs

Alexander HeuRner Chris Poskitt
Otto-Friedrich-Universitat ETH Zurich
Bamberg

Dagstuhl, November 2015

Analysis
(Verification) of Evolving Graph Structures

CcP

assertional reasoning for
attributed GTS
(see yesterday's talk)

verification of (concurrent)
object-oriented programs

leveraging contracts in
software correctness
techniques

AH

verification of dynamic
message passing systems
(graph grammars, partial order
structures, treewidth et al.,
wqos, abstractions)

verification of asynchronous
concurrent systems

reasoning for policies with
resources via GTS

Today's topic:

Formalisations and analysis of different
state-of-the-art concurrency abstractions for
concurrent asynchronous (object-oriented)
programs.

€<

© We are talking about ‘‘real’’ source code here! ©

Some Initial Problems here:

models must be highly dynamic
(e.g. dynamic generation of threads, channels, queues, stacks,
wait/dependency relationships)

expressiveness needed beyond “classical” automaton/Petri net
models (e.g. complicated inter process and memory relations)

semi-formal semantics / semantics “by implementation”
different competing (and contradictory) semantics

changes of semantic meta-model are common (and frequent)

Thus:
Not one semantic meta model but different
competing and possibly contradictory models

that also are rivaled by the

mental concurrency model

of the programmer.

Proposed Solution

> modular/parameterisable semantics (“semantic plug ins”)
> based on graph transformation systems

> formalise dynamic runtime semantics

e make scheduler explicit
e make queueing model explicit
e ...

> assume static semantics (typing, generics,. . .) already done

Prototypical implementation

> for SCOOP: an object-oriented message-passing language
> prototype based on a'GTS model in the GROOVE tool

> plugin for official Eiffel Studio IDE (verification version)

e get “flattened” source code
e feedback errors to code display

> also standalone tool working on-SCOQOP. graphs

> parameterisation by SCOOP's two most recent
(competing/contradictory) execution models

(Joint work with Claudio Corrodi.)

Let's take a closer look. . .

example piece of SCOOP(-ish) code

separate X,y separate X,y
do do
x.set_colour (Green) x.set_colour (Indigo)
y.set_colour (Green) a_colour = x.get_colour
end y.set_colour(a_colour)
end

separate objects are associated with threads of execution that
have exclusive responsibility for executing methods on them

separate block guarantees: calls are queued as requests in
program order; and no intervening requests are queued

consider two different queueing semantics. . .

(blackboard demo)

NEEE,

ho

kElhlﬂ hy, h3

 L1H

NERE,

-5 hakD hsz hy

o

©

™

©

&

®OO6

Achieved so far. . .

formalised the two execution models

straightforward parameterisation by GTS rules and programs

included “mental models” of engineers behind compilers and
existing formal models in interviews

diagrammatic representation and easy simulation

simple analysis/verification tasks (simulation, deadlock
detection,. ..) help to highlight discrepancies between models

“play” with different semantic meta-models
highlighted a real inconsistency between the queuing semantics

running time for large programs using the generic verification
algorithms

11

A glimpse at the model

> example GTS rule modelling entering a separate block
(private queues semantics):

refers_to. handler Legend for edge/node colouring:

red: negative application cond., o
© . 4 0 blue: matched and deleted, 4
ReferenceValue Q@ 2V § stor‘age green: newly created next
.

@

[d e H
¢
value syncnextiqueue.next*

. o n40
varisble g %Wﬁphvateiqueue— SubQueue
lStackFrameF—:\—{ Memory"/g current _state open
% current _ state -
:

_ creator_fram

12

> we use control programs to make the model's scheduler explicit
(open to parameterisation) and to control atomicity

initialize_model;

while (progress & no_error) {
for each handler p:

alap handler_local_execution_step (p)+;

try synchronisation_step;

¥

recipe handler_local_execution_step (p){
try separate_object_creation(p)+;
else try assignment_to_variable(p)+;
else try ... ;
try clean_up_model+;

}

recipe synchronisation_step(){
reserve_handlers | dequeue_task | ...;

}

VA Plug n ----- - -e e oo
recipe separate_object_creation(p){

}

Let's talk about Verification. ..

(ongoing work)

> generic abstractions for SCOOP graphs

> “well-structuredness” properties of SCOOP graphs

o> relation to existing models, submodels, decidable subclasses, ...
> on-the-fly M2M to counting abstractions (Petri nets) etc.

> general concept of “semantics parameterised verfication”

14

Mid-term /Long-term goals:

semantic workbench with series of tools usable for the
software-engineer (who is writing concurrent software and/or
writing compilers/libraries for concurrency abstractions)

o> clearer connection to existing approaches (e.g. K etc.)

> structural comparison of concurrency abstractions from a graph

perspective

properly formalise and algorithmically attack “semantics
parameterised analysis”

15

