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Analysis

(Verification) of Evolving Graph Structures

2



CP

Í assertional reasoning for
attributed GTS
(see yesterday’s talk)

Í verification of (concurrent)
object-oriented programs

Í . . .
Í leveraging contracts in

software correctness
techniques

AH

Í verification of dynamic
message passing systems
(graph grammars, partial order
structures, treewidth et al.,
wqos, abstractions)

Í verification of asynchronous
concurrent systems

Í . . .
Í reasoning for policies with

resources via GTS
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Today’s topic:

Formalisations and analysis of different

state-of-the-art concurrency abstractions for

concurrent asynchronous (object-oriented)

programs.

, We are talking about “real” source code here! ,
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E
Some Initial Problems here:

E models must be highly dynamic
(e.g. dynamic generation of threads, channels, queues, stacks,
wait/dependency relationships)

E expressiveness needed beyond “classical” automaton/Petri net
models (e.g. complicated inter process and memory relations)

E semi-formal semantics / semantics “by implementation”

E different competing (and contradictory) semantics

E changes of semantic meta-model are common (and frequent)

5



Thus:

Not one semantic meta model but different

competing and possibly contradictory models

that also are rivaled by the

mental concurrency model

of the programmer.
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Proposed Solution

Í modular/parameterisable semantics (“semantic plug ins”)

Í based on graph transformation systems

Í formalise dynamic runtime semantics
• make scheduler explicit
• make queueing model explicit
• . . .

Í assume static semantics (typing, generics,. . . ) already done
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class PHILOS
OPHER

create make

featur
e -- Initia

lisati
on

make (philo
sopher

: INTEGE
R; left ,

right:
separa

te FORK;
round_

count:
INTEGE

R)

-- Initia
lise with ID of ‘philo

sopher
’, forks

‘left ’
and ‘right

’, and for ‘round
_count

’ times
to eat.

requir
e

valid_
id: philos

opher
> 0

valid_
times_

to_eat
: round_

count
> 0

do id := philos
opher

left_f
ork := left

right_
fork := right

times_
to_eat

:= round_
count

ensure id_set
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opher

left_f
ork_se
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ork = left

right_
fork_s

et: right_
fork = right

times_
to_eat

_set:
times_
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= round_
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end

featur
e -- Access
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opher ’
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times_
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-- How many times
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end
(Joint work with Claudio Corrodi.)

Prototypical implementation

Í for SCOOP: an object-oriented message-passing language

Í prototype based on a GTS model in the GROOVE tool

Í plugin for official Eiffel Studio IDE (verification version)
• get “flattened” source code
• feedback errors to code display

Í also standalone tool working on SCOOP graphs

Í parameterisation by SCOOP’s two most recent
(competing/contradictory) execution models
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Let’s take a closer look. . .

Í example piece of SCOOP(-ish) code

separate x,y
do

x.set_colour(Green)
y.set_colour(Green)

end

separate x,y
do

x.set_colour(Indigo)
a_colour = x.get_colour
y.set_colour(a_colour)

end

Í separate objects are associated with threads of execution that
have exclusive responsibility for executing methods on them

Í separate block guarantees: calls are queued as requests in
program order; and no intervening requests are queued

Í consider two different queueing semantics. . .
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(blackboard demo)
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XAchieved so far. . .

Í formalised the two execution models

, straightforward parameterisation by GTS rules and programs

Í included “mental models” of engineers behind compilers and
existing formal models in interviews

, diagrammatic representation and easy simulation

Í simple analysis/verification tasks (simulation, deadlock
detection,. . . ) help to highlight discrepancies between models

, “play” with different semantic meta-models

, highlighted a real inconsistency between the queuing semantics

/ running time for large programs using the generic verification
algorithms
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A glimpse at the model

Í example GTS rule modelling entering a separate block
(private queues semantics):
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Fig. 3. Simplified QoQ rule for entering a separate x,y,. . . block, which uses �-
quantification to atomically match arbitrarily many handlers. The rule assumes that
the handlers’ queues already contain some other private subqueues open

initialize_model; // call gts rule for initialisation
while (progress & no_error) {

for each handler p: // choose handlers under some scheduling strategy
alap handler_local_execution_step(p)+; // each handler executes local actions as long as possible

try synchronisation_step; // then try (one) possible global synchronisation step
}
recipe handler_local_execution_step (p){

try separate_object_creation(p)+; // try local actions that are possibly applicable
else try assignment_to_variable(p)+;
else try ... ; // sequentially try all other possible actions
try clean_up_model +; // do some "garbage collection" to keep the model small

}
recipe synchronisation_step (){

reserve_handlers | dequeue_task | ...; // non -deterministically try to synchronise
}
... // remaining recipes (core functionality)
// ---------- plug in -------------------------------------------------------------------------------
recipe separate_object_creation(p){ // provide different implementations for RQ and QoQ

... // and parameterise the control program
}
... // remaining recipes that are plugged in

Listing 3. Simplified control program (in Groove syntax)

notation was extremely beneficial, as we were able to directly use simulations
in Groove during the interviews, which were understood and accepted by the
interviewees.

In addition, we compared Groove simulations of the executions of Scoop
programs (see the benchmarks of Section 5) against their actual execution be-
haviour in the official Scoop IDE and compiler (both the current release that
implements QoQ, and an older one that implemented RQ). Again, this aug-
mented our confidence.

Furthermore, we were able to compare Scoop-Gts(QoQ) with the struc-
tural operational semantics for QoQ provided in [39]. Unfortunately, the pro-
vided semantic rules focus only on a much simplified core, preventing a rigorous
bisimulation proof exploiting the algebraic characterisations of Gts. We can,
however, straightforwardly implement and simulate them in our model.

To conclude, Scoop-Gts fits into the row of existing Scoop formal models,
and is able to cover (avoiding the semantically overloaded word “simulate”) both
of the principal semantic models.
Expressiveness. As previously discussed, Scoop-Gts is expressive enough to
cover the existing RQ and QoQ semantic models of Scoop due to its modu-
larity and the possibility to plug-in different queueing semantics. We currently
plan to include other semantic formalisations of Scoop-like languages, e.g. the
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Í we use control programs to make the model’s scheduler explicit
(open to parameterisation) and to control atomicity
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tural operational semantics for QoQ provided in [39]. Unfortunately, the pro-
vided semantic rules focus only on a much simplified core, preventing a rigorous
bisimulation proof exploiting the algebraic characterisations of Gts. We can,
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|=
Let’s talk about Verification. . .

(ongoing work)

Í generic abstractions for SCOOP graphs

Í “well-structuredness” properties of SCOOP graphs

Í relation to existing models, submodels, decidable subclasses, . . .

Í on-the-fly M2M to counting abstractions (Petri nets) etc.

Í general concept of “semantics parameterised verfication”
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Mid-term/Long-term goals:

Í semantic workbench with series of tools usable for the
software-engineer (who is writing concurrent software and/or
writing compilers/libraries for concurrency abstractions)

Í clearer connection to existing approaches (e.g. K etc.)

Í structural comparison of concurrency abstractions from a graph
perspective

Í properly formalise and algorithmically attack “semantics
parameterised analysis”
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