
A Graph-Based Semantics Workbench for
Concurrent Asynchronous Programs

Alexander Heu§ner

Otto-Friedrich-UniversitŠt
Bamberg

Chris Poskitt

ETH ZŸrich

Dagstuhl, November 2015

Analysis
(VeriÞcation) ofEvolving Graph Structures

2

CP

! assertional reasoning for
attributed GTS
(see yesterdayÕs talk)

! veriÞcation of (concurrent)
object-oriented programs

! . . .

! leveraging contracts in
software correctness
techniques

AH

! veriÞcation of dynamic
message passing systems
(graph grammars, partial order
structures, treewidth et al.,
wqos, abstractions)

! veriÞcation of asynchronous
concurrent systems

! . . .

! reasoning for policies with
resources via GTS

3

TodayÕs topic:

Formalisations and analysisof di!erent
state-of-the-artconcurrency abstractionsfor
concurrent asynchronous (object-oriented)

programs.

! We are talking about ÒrealÓ source code here! !

4

!
Some Initial Problems here:

! models must behighly dynamic
(e.g. dynamic generation of threads, channels, queues, stacks,
wait/dependency relationships)

! expressiveness needed beyond ÒclassicalÓ automaton/Petri net
models (e.g. complicated inter process and memory relations)

! semi-formal semantics / semantics Òby implementationÓ

! di!erent competing (and contradictory) semantics

! changes of semantic meta-model are common (and frequent)

5

Thus:
Not one semantic meta model but di!erent
competingand possiblycontradictorymodels

that also are rivaled by the

mental concurrency model

of the programmer.

6

Proposed Solution

! modular/parameterisable semantics (Òsemantic plug insÓ)

! based on graph transformation systems

! formalise dynamic runtime semantics
¥ make scheduler explicit
¥ make queueing model explicit
¥ . . .

! assume static semantics (typing, generics,. . .) already done

7

class
PHILOSOPHER

create
make

feature -- Initialisation

make (philosopher : INTEGER ; left , right : separate FORK; round_count : INTEGER)

-- Initialise with ID of ‘philosopher ’, forks ‘left ’ and ‘right ’, and for ‘round_count ’ times to eat.

require
valid_id : philosopher > 0

valid_times_to_eat : round_count > 0

do id := philosopher

left_fork := left

right_fork := right

times_to_eat := round_count

ensure
id_set : id = philosopher

left_fork_set : left_fork = left

right_fork_set : right_fork = right

times_to_eat_set : times_to_eat = round_count

end

feature -- Access

id: INTEGER -- Philosopher ’s id.

feature -- Measurement

times_to_eat : INTEGER

-- How many times does it remain for the philosopher to eat?

end
(Joint work with Claudio Corrodi.)

Prototypical implementation

! for SCOOP: an object-oriented message-passing language

! prototype based on a GTS model in the GROOVE tool

! plugin for o"cial Ei!el Studio IDE (veriÞcation version)
¥ get ÒßattenedÓ source code
¥ feedback errors to code display

! also standalone tool working on SCOOP graphs

! parameterisation by SCOOPÕs two most recent
(competing/contradictory) execution models

8

LetÕs take a closer look. . .

! example piece of SCOOP(-ish) code

separate x,y
do

x. set_colour (Green)
y. set_colour (Green)

end

separate x,y
do

x. set_colour (Indigo)
a_colour = x. get_colour
y. set_colour (a_colour)

end

! separate objectsare associated with threads of execution that
haveexclusiveresponsibility for executing methods on them

! separate block guarantees:calls are queued as requests in
program order; and no intervening requestsare queued

! consider two di!erent queueing semantics. . .

9

(blackboard demo)

! "

! # ! #

! $! % ! "! %&'! $

! "

! # ! #

! $! % ! "! %&'! $

10

!
Achieved so far. . .

! formalised the two execution models

! straightforward parameterisation by GTS rules and programs

! included Òmental modelsÓ of engineers behind compilers and
existing formal models in interviews

! diagrammatic representation and easy simulation

! simple analysis/veriÞcation tasks (simulation, deadlock
detection,. . .) help to highlight discrepancies between models

! ÒplayÓ with di!erent semantic meta-models

! highlighted a real inconsistency between the queuing semantics

" running time for large programs using the generic veriÞcation
algorithms

11

A glimpse at the model

! exampleGTS rulemodelling entering a separate block
(private queues semantics):

8 Ñauthor(s) removed for peer reviewÑ

Handler QoQ SubQueue

SubQueue

n40
SubQueue

_open

MemoryObject

Handler

MemoryStackFrame

Variable

ReferenceValue

InitialState

� storage

sync

handler

st
or

ag
e

ac
tiv

e_
fr
am

evariable

value

refers_to

next_queue.next*

next

next

_creator_frame

_private_queue
current_state

current_state

@ @ @

@@

@

@

@

!=

Legend for edge/node colouring:
red: negative application cond.,
blue: matched and deleted,
green: newly created

Fig. 3. SimpliÞed QoQ rule for entering a separate x,y,. . . block, which uses ! -
quantiÞcation to atomically match arbitrarily many handlers. The rule assumes that
the handlersÕ queues already contain some other private subqueues open

init ia l ize_model ; // call gts rule for in i t ia l isat ion
while (progress & no_error) {

for each handler p: // choose handlers under some schedul ing strategy
alap handler_local_execut ion_step (p)+; // each handler executes local act ions as long as possible

try synchronisat ion_step ; // then try (one) possible global synchronisat ion step
}
recipe handler_local_execut ion_step (p){

try separate_object_creat ion (p)+; // try local act ions that are possibly appl icable
else try assignment_to_var iable (p)+;
else try ... ; // sequent ial ly try all other possible act ions
try clean_up_model +; // do some " garbage col lect ion " to keep the model small

}
recipe synchronisat ion_step () {

reserve_handlers | dequeue_task | ...; // non- determinist ical ly try to synchronise
}
... // remaining recipes (core funct ional i ty)
// - - - - - - - - - - plug in -- -
recipe separate_object_creat ion (p){ // provide dif ferent implementat ions for RQ and QoQ

... // and parameter ise the control program
}
... // remaining recipes that are plugged in

Listing 3. SimpliÞed control program (in Groove syntax)

notation was extremely beneficial, as we were able to directly use simulations
in Groove during the interviews, which were understood and accepted by the
interviewees.

In addition, we compared Groove simulations of the executions of Scoop
programs (see the benchmarks of Section 5) against their actual execution be-
haviour in the official Scoop IDE and compiler (both the current release that
implements QoQ, and an older one that implemented RQ). Again, this aug-
mented our confidence.

Furthermore, we were able to compare Scoop-Gts(QoQ) with the struc-
tural operational semantics for QoQ provided in [39]. Unfortunately, the pro-
vided semantic rules focus only on a much simplified core, preventing a rigorous
bisimulation proof exploiting the algebraic characterisations of Gts. We can,
however, straightforwardly implement and simulate them in our model.

To conclude, Scoop-Gts fits into the row of existing Scoop formal models,
and is able to cover (avoiding the semantically overloaded word “simulate”) both
of the principal semantic models.
Expressiveness. As previously discussed, Scoop-Gts is expressive enough to
cover the existing RQ and QoQ semantic models of Scoop due to its modu-
larity and the possibility to plug-in different queueing semantics. We currently
plan to include other semantic formalisations of Scoop-like languages, e.g. the

12

! we usecontrol programsto make the modelÕs scheduler explicit
(open to parameterisation) and to control atomicity

8 Ñauthor(s) removed for peer reviewÑ

Handler QoQ SubQueue

SubQueue

n40
SubQueue

_open

MemoryObject

Handler

MemoryStackFrame

Variable

ReferenceValue

InitialState

! storage

sync

handler

st
or

ag
e

ac
tiv

e_
fr

am
e

variable

value

refers_to

next_queue.next*

next

next

_creator_frame

_private_queue
current_state

current_state

@ @ @

@@

@

@

@

!=

Legend for edge/node colouring:
red: negative application cond.,
blue: matched and deleted,
green: newly created

Fig. 3. SimpliÞed QoQ rule for entering a separate x ,y , . . . block, which uses ! -
quantiÞcation to atomically match arbitrarily many handlers. The rule assumes that
the handlersÕ queues already contain some other private subqueues open

init ia l ize_model ; // call gts rule for in i t ia l isat ion
while (progress & no_error) {

for each handler p: // choose handlers under some schedul ing strategy
alap handler_local_execut ion_step (p)+; // each handler executes local act ions as long as possible

try synchronisat ion_step ; // then try (one) possible global synchronisat ion step
}
recipe handler_local_execut ion_step (p){

try separate_object_creat ion (p)+; // try local act ions that are possibly appl icable
else try assignment_to_var iable (p)+;
else try ... ; // sequent ial ly try all other possible act ions
try clean_up_model +; // do some " garbage col lect ion " to keep the model small

}
recipe synchronisat ion_step () {

reserve_handlers | dequeue_task | ...; // non- determinist ical ly try to synchronise
}
... // remaining recipes (core funct ional i ty)
// - - - - - - - - - - plug in -- -
recipe separate_object_creat ion (p){ // provide dif ferent implementat ions for RQ and QoQ

... // and parameter ise the control program
}
... // remaining recipes that are plugged in

Listing 3. SimpliÞed control program (in Groove syntax)

notation was extremely beneÞcial, as we were able to directly use simulations
in Groove during the interviews, which were understood and accepted by the
interviewees.

In addition, we compared Groove simulations of the executions ofScoop
programs (see the benchmarks of Section 5) against their actual execution be-
haviour in the o! cial Scoop IDE and compiler (both the current release that
implements QoQ , and an older one that implemented RQ). Again, this aug-
mented our conÞdence.

Furthermore, we were able to compareScoop -Gts (QoQ) with the struc-
tural operational semantics for QoQ provided in [39]. Unfortunately, the pro-
vided semantic rules focus only on a much simpliÞed core, preventing a rigorous
bisimulation proof exploiting the algebraic characterisations of Gts . We can,
however, straightforwardly implement and simulate them in our model.

To conclude, Scoop -Gts Þts into the row of existing Scoop formal models,
and is able to cover (avoiding the semantically overloaded word ÒsimulateÓ) both
of the principal semantic models.

Expressiveness. As previously discussed,Scoop -Gts is expressive enough to
cover the existing RQ and QoQ semantic models ofScoop due to its modu-
larity and the possibility to plug-in di " erent queueing semantics. We currently
plan to include other semantic formalisations of Scoop -like languages, e.g. the

13

|=
LetÕs talk aboutVeriÞcation. . .

(ongoing work)

! generic abstractions for SCOOP graphs

! Òwell-structurednessÓ properties of SCOOP graphs

! relation to existing models, submodels, decidable subclasses, . . .

! on-the-ßy M2M to counting abstractions (Petri nets) etc.

! general concept ofÒsemantics parameterised verÞcationÓ

14

Mid-term/Long-term goals:

! semantic workbench with series of tools usable for the
software-engineer (who is writing concurrent software and/or
writing compilers/libraries for concurrency abstractions)

! clearer connection to existing approaches (e.g.K etc.)

! structural comparison of concurrency abstractions from a graph
perspective

! properly formalise and algorithmically attack Òsemantics
parameterised analysisÓ

15

